ENCOURAGING THE PURCHASE OF SAFER VEHICLES - PART A

BENEFITS AND COSTS OF VEHICLE SAFETY FEATURES

Prepared by
Michael Paine
Vehicle Design and Research Pty Limited

for
DEPARTMENT FOR PLANNING AND INFRASTRUCTURE
WESTERN AUSTRALIA

December 2002
Encouraging the Purchase of Safer Vehicles – Benefits and Costs of Safety Features

Michael Paine

Vehicle Design and Research Pty Limited
10 Lanai Place, Beacon Hill NSW Australia 2100

Department for Planning and Infrastructure, Government of Western Australia
Vehicle Safety Branch, 21 Murray Rd South, Welshpool WA 6106

This was a project under the Road Safety Council Research Program (RSCR) administered by the Research Advisory Group (RAG). The project was managed by Trevor McDonald of the Vehicle Safety Branch, Department for Planning and Infrastructure.

Road safety research shows that there could be substantial benefits arising from encouraging the purchase of safer vehicles. Fleet and private vehicle buyers need to be targeted in such strategies. To assist in the development of effective strategies an analysis was undertaken of the potential benefits and costs of more than 60 safety features that are available or under development.

The analysis identified priority safety features that provide cost-effective reductions in serious injuries and fatalities.

PASSENGER VEHICLE, OCCUPANT, INJURIES, AIRBAG, CRASHWORTHINESS

The views expressed in this report are those of the author and do not necessarily represent the views or policy of the West Australian Government or its departments.
Executive Summary

There is a wide range of safety features and products available for motor vehicles that can assist in avoiding accidents or making them less severe. Some of these features are only available on luxury vehicles and these vehicles tend to do well in crashworthiness ratings based on real world crashes. The Swedish insurance organisation Folksam has estimated that at least 30% of fatal and serious injuries could be avoided if the average crashworthiness of the fleet was raised to that of the best vehicles currently available.

There would be benefits in Australia arising from making some of these safety features more widely available (that is, encouraging vehicle manufacturers to make them available as standard or optional equipment) and encouraging vehicle purchasers to buy vehicles with these features.

A comprehensive range of vehicle safety features has been evaluated. Road safety research literature has been analysed to determine, where possible, the likely influence of these safety features on road accidents. Economic analysis methodology (as used by the Roads and Traffic Authority of NSW for evaluating items such as proposed roadworks) has been applied to each safety feature to derive an estimate of long term benefits and costs. The resulting benefit/cost ratios contained some surprises - features commonly regarded as cost effective did not rank high in the list. Further analysis suggested that adjusting for exposure (such as higher than average occupancy of certain seats) results in more favourable ranking of these features.

It is recommended that new vehicle purchasers, particularly purchasers of fleets, be encouraged to place a higher priority on safety in the selection process. Greater awareness of safety features that have a significant influence on serious crashes would go some way towards this goal.

Priority safety features are listed below. These either have favourable benefit cost ratios, when compared with a driver airbag or are effective at reducing serious crashes. To arrive at benefit cost ratios above average exposure has been assumed in some cases. This is likely with fleet vehicles. With some features it is sometimes difficult to establish whether a particular vehicle has them as standard or optional equipment.

Features that are readily available

- driver airbag (fortunately most models now have a driver airbag as standard)
- side airbag for driver and front passenger
- ABS brakes
- a cargo barrier in wagons and vans
- a front passenger airbag

Features that are available on some vehicles but are not common

- headlights “on” alarm or automatic headlights or daytime running lights
- seat belt load limiters for front seats
• side airbags for the rear outboard seats
• speed alarm (set by driver)
• seat belt pretensioner for front seats
• anti-submarining seat design
• hazard lights activate in a severe crash

Features that are rarely available in Australia

• top speed limiter (set at 120km/h)
• seat belt interlock (smart alarm)
• high transmittance glazing
• knee bolster/padding
• laminated or shatter-proof glazing for all windows
Introduction

There is a wide range of safety features and products available for motor vehicles that can assist in avoiding accidents or making them less severe. Some of these features are only available on luxury vehicles and these vehicles tend to do well in crashworthiness ratings based on real world crashes. The Swedish insurance organisation Folksam has estimated that at least 30% of fatal and serious injuries could be avoided if the average crashworthiness of the fleet was raised to that of the best vehicles currently available.

There would be benefits in Australia arising from making some of these safety features more widely available (that is, encouraging vehicle manufacturers to make them available as standard or optional equipment) and encouraging vehicle purchasers to buy vehicles with these features.

In addition, there is now considerable information about the relative safety of vehicle models available from the New Car Assessment Program (NCAP) and the Used Car Safety Rating (UCSR) program.

An information package that focuses on safety issues will assist in influencing the purchase of safer new vehicles, particularly fleets. To assist in the preparation of such a package an analysis has been conducted of safety features that are available or are under development. A substantial literature search has been conducted in order to establish, where possible, the likely benefits and costs of these features. The results of the analysis are set out in this report.

This was a project was conducted under the Road Safety Council Research Program (RSCRP) administered by the Research Advisory Group (RAG). The project was managed the Department for Planning and Infrastructure.

Sources of data

Proceedings of conferences associated with vehicle safety and other sources were reviewed for items concerning benefit/cost analyses in general and specific information about the costs and effectiveness of safety features. Results of the literature search are set out in Appendix A. More than 300 documents were covered although not all were subsequently used in the benefit cost analyses.

Glass’s Guide to Australian vehicle models (Glass’s Guide 2001) was used for information about safety features on vehicles and the cost and resale value of some safety features.

Methodology for estimating benefits and costs

In general, information about the benefits and costs of safety features are sketchy and inconsistent. Various methodologies have been applied in an attempt to analyse some safety features but often the methodology is not universally applicable to vehicle safety features.

In 1998 Vehicle Design and Research carried out some related investigations for the Roads and Traffic Authority of NSW (Paine and Gibbs, 1998). The RTA’s Economic Analysis Manual (RTA 1998) was used as a basis for that work. However, the Manual was primarily intended for assessment of roadworks and it
was not directly applicable to vehicle safety features. It was therefore adapted for the 1998 project in consultation with the RTA’s economic analysis personnel. In essence, the methodology involved converting the annual cost of road crashes to an annual dollar risk per vehicle. The benefits of applying a safety feature to a particular vehicle could then be estimated, based on the types of crashes that the safety feature was likely to influence, and the effectiveness of the feature in such crashes (the percent that are likely to be saved).

A significant advantage of this approach is that it is independent of the proportion of the fleet fitted with the safety feature.

Briefly, the steps involved were:

1. Identify each safety feature. Estimate the initial cost of the feature, the possible effect on resale value (giving a net installation cost) and the annual cost of the feature (maintenance or amortised replacement).

2. Identify the group(s) of vehicles to which the safety feature is applicable (in this project the analysis was confined to passenger cars but it applies equally to other vehicles such as trucks, buses and motorcycles).

3. Calculate the annual crash risk, in terms of road crash dollars, for fatal, serious injury, minor injury and non-injury crashes for a single vehicle.

4. Determine the types of crashes potentially influenced by the safety feature. For example, driver airbags are generally only of benefit in a frontal crash.

5. Estimate the proportion of the influenced crashes that are likely to be saved by use of the safety feature. This step usually has the greatest uncertainty.

6. Calculate the crash savings, based on steps 3, 4 and 5.

7. Calculate the net annual savings by subtracting the annual (maintenance) cost from the estimated crash savings.

8. Determine appropriate financial values to use in the benefit/cost analysis (7% discount rate and 10 year evaluation period).

9. Calculate the benefit/cost ratio by applying the Present Value formula to the net annual savings and dividing by the net installation cost.

\[
\text{B/C} = \frac{\text{PV(annual crash savings - annual maintenance, 7% for 10 years)}}{(\text{Initial cost - extra resale value})}
\]

Further details about the application of each of these steps to the current project are set out below.
List of safety features

A list of safety features that was provided in the project brief was combined with the results of a literature review to produce a list of possible safety features for analysis. The features were categorised into crash factors to aid analysis and to ensure that all aspects of the crash sequence were covered. These factors were:

<table>
<thead>
<tr>
<th>FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRIVER’S CONTROL OF VEHICLE</td>
</tr>
<tr>
<td>HANDLING AND BRAKING</td>
</tr>
<tr>
<td>HAZARD RECOGNITION BY DRIVER</td>
</tr>
<tr>
<td>HAZARD RECOGNITION BY OTHERS</td>
</tr>
<tr>
<td>OTHER AVOIDANCE FACTORS</td>
</tr>
<tr>
<td>OCCUPANT RESTRAINT</td>
</tr>
<tr>
<td>VEHICLE INTEGRITY</td>
</tr>
<tr>
<td>HAZARD TO OTHER ROAD USERS</td>
</tr>
<tr>
<td>HAZARD TO OCCUPANTS</td>
</tr>
<tr>
<td>POST-CRASH FACTORS (RESCUE)</td>
</tr>
</tbody>
</table>

Appendix B contains details about each of the safety features included in the analysis.

Cost of safety features

The cost of each safety feature was estimated from the limited information in the literature review, from Glass's Guide and by extrapolation of the cost of similar devices. Details are set out in Appendix D.

In a few cases resale value was available from Glass's Guide. Where available, the 1998 resale value of an option was used to calculate a net cost after three years since many fleets look at disposing of vehicles after about 3 years [Craigen 1992].

There is considerable uncertainty about the cost of safety features, particularly since the cost can vary greatly between models of vehicle. The values used are a best guess for popular vehicles. It has been assumed that each safety feature is reasonably popular and therefore there is an opportunity to spread development costs over a large market. Features will usually be more expensive if they are only supplied in small numbers. Other than this possibility, the benefit/cost methodology is not greatly influenced by the proportion of the fleet having a particular feature.

Cost of road crashes

The RTA Economic Analysis Manual uses generalised crash costs - namely a generic cost of each fatal, serious injury, minor injury and non-injury crash. In most cases no attempt is made to identify the costs for particular types of
crashes, although some information is available for crashes involving heavy trucks.

The RTA Manual gives costs per crash. For a safety feature analysis it is necessary to convert this to a cost per car involved. The following table shows the derivation of these costs.

Table 2

ESTIMATION OF CRASH COSTS PER VEHICLE
(Based on NSW crash statistics for 1999)

<table>
<thead>
<tr>
<th>Crash Type</th>
<th>Car crashes</th>
<th>Cars in crashes</th>
<th>Ratio Car/Crash</th>
<th>Cost per crash#</th>
<th>Cost per car invol.</th>
<th>Rate per 10K cars</th>
<th>Cost per car reg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>402</td>
<td>528</td>
<td>0.76</td>
<td>$937,000</td>
<td>$713,398</td>
<td>1.98</td>
<td>$141.55</td>
</tr>
<tr>
<td>Hosp Inj*</td>
<td>3,825</td>
<td>5,750</td>
<td>0.67</td>
<td>$175,000</td>
<td>$116,413</td>
<td>21.61</td>
<td>$251.55</td>
</tr>
<tr>
<td>Other Inj*</td>
<td>13,413</td>
<td>20,386</td>
<td>0.66</td>
<td>$27,000</td>
<td>$17,765</td>
<td>76.61</td>
<td>$136.10</td>
</tr>
<tr>
<td>Non-Injury</td>
<td>31,226</td>
<td>52,875</td>
<td>0.59</td>
<td>$12,200</td>
<td>$7,205</td>
<td>198.70</td>
<td>$143.16</td>
</tr>
</tbody>
</table>

298.91 $672.36

* Estimated from 17238 total with 22% being hospital admissions
Based on RTA Economic Analysis Manual, 1999, Table 8

This analysis indicates that the “average” car represents an crash risk valued at $672 per year. This is the maximum amount that could be saved if all crashes were eliminated. This is somewhat less than the typical amount that vehicle owners pay in insurance premiums to cover personal injury and property losses. Furthermore it does not take into account the traumatic effects that a fatal or serious crash can have on business, family and friends.

Crashes potentially influenced by safety features

Only crashes that clearly had potential to be influenced by a particular safety feature were included in the analysis. For example, driver airbags are generally only beneficial in a frontal crash, which comprise about 60% of all crashes. Other factors for which reasonable crash information was available included severity (fatal, injury of property) day/night time, wet weather, road user movement, speed, alcohol and fatigue.

In some cases factors were combined. For example, side airbags for outboard rear seating positions could be expected to have an influence mainly on side impact crashes (20% of all crashes) where there was a rear seat occupant (13% – see next section). The estimated proportion of crashes influenced was therefore 20% x 13% = 3%.

Appendix C sets out the basis for estimating crashes influenced by each safety feature. Cases involving high uncertainty are indicated in that appendix.
Effectiveness of safety features

An estimate was made of the proportion of influenced crashes that were likely to be saved by a particular safety feature. For example, the literature suggests that front passenger airbags are about 20% effective at reducing fatal and serious injuries. This was applied to frontal crashes with front seat passengers (estimated 12% of all crashes) giving an estimated fatal crash saving of $12\% \times 20\% = 2.4\%$.

Appendix C includes estimates of the effectiveness of each safety feature and, where applicable, includes the literature references that were used to derive the estimate. As indicated in that appendix, there was uncertainty about the effectiveness of some of the safety features. In these cases the assumptions made in deriving an estimate of effectiveness are stated in the appendix.

Accounting for "Exposure"

The method of calculating benefit/cost treats all vehicles as equal. New vehicles, particularly fleet vehicles, typically travel at least twice the annual kilometres of the "average" vehicle. Their exposure to the risk of serious accidents is therefore at least twice the average and the benefit/cost ratio could be expected to be at least twice that of the average vehicle. For this reason the values used in the graphs have been normalised so that they are expressed relative to that of a driver airbag. In this way consumers can compare various safety features with the priority they assign to a driver airbag. It turns out that the actual benefit/cost ratio for a driver airbag (for an "average" Australian vehicle) is 0.8 - that is, the benefits are slightly less than the costs. Therefore normalisation of this value to 1 has only a small effect.

Safety features that apply to particular non-driver seating positions have the potential to be much more cost effective in cases where the occupancy is higher than average. Average occupancy was based on (unpublished) RTA NSW surveys and accident statistics:

<table>
<thead>
<tr>
<th>Seating Position</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td>100%</td>
</tr>
<tr>
<td>Front passenger</td>
<td>20%</td>
</tr>
<tr>
<td>Rear outboard (L or R)</td>
<td>13%</td>
</tr>
<tr>
<td>Centre rear</td>
<td>1%</td>
</tr>
</tbody>
</table>

For example, due mainly to the low average occupancy, a front passenger airbag has a benefit/cost ratio of only 0.2. However, if this seating position is occupied most of the time in a particular vehicle then the benefit/cost ratio reaches 1 (this is better than that of a driver airbag - although passenger airbags are slightly less effective than driver airbags, the net cost of passenger airbags is typically lower).

Another example is cargo barriers. For the "average" station wagon or van it is assumed that significant cargo is only carried 5% of the time. For commercial vehicles this figure could be 100%, suggesting a benefit cost ratio twenty times the "average" value of 0.47. In other words for such cases the benefits exceed...
the costs by 9 to 1. A more conservative value has been used in the analysis based on a "high use" rate of 20% and giving a benefit/cost ratio of 1.9.

In order to give an indication of the range of benefits arising from above-average levels of exposure, the calculations include a "high use" (HI USE) component.

Results of Benefit/Cost Analysis

Appendix C contains details of the analysis for each safety feature. The following table shows the list sorted by estimated benefit/cost ratio.

Note that the first item, a top speed limiter, shows a very high benefit/cost ratio. This is partly because it has been assumed that top speed limiting can be very easily built into modern engine management chips for little or no cost.

For the "average" vehicle only 13 of the evaluated features showed a benefit/cost ratio greater than one - indicating that benefits exceed costs. Several items that were assumed to provide good road safety benefits did not score particularly well. Examples are ABS brakes, driver airbag, side airbags and passenger airbags. This was mainly due to the high installation costs of these devices and the low average occupancy of some seats.

Table 4 - Summary of Estimated Benefit/Cost Ratios

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>COST (NET)</th>
<th>MAINT.</th>
<th>BENEFIT/ COST (HI-USE)</th>
<th>PAGE APP C</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP SPEED LIMITER (SET AT 120km/h)</td>
<td>$1.00</td>
<td>$0.00</td>
<td>67.22</td>
<td>C6</td>
</tr>
<tr>
<td>HEADLIGHTS ON WARNING/AUTO</td>
<td>$50.00</td>
<td>$20.00</td>
<td>7.79</td>
<td>C15</td>
</tr>
<tr>
<td>DAYTIME RUNNING LIGHTS</td>
<td>$50.00</td>
<td>$2.00</td>
<td>7.67</td>
<td>C15</td>
</tr>
<tr>
<td>SEAT BELT INTERLOCK</td>
<td>$50.00</td>
<td>$0.00</td>
<td>3.19</td>
<td>C29</td>
</tr>
<tr>
<td>SEAT BELT LOAD LIMITERS, FRONT</td>
<td>$20.00</td>
<td>$0.00</td>
<td>1.95</td>
<td>C30</td>
</tr>
<tr>
<td>SPEED ALARM</td>
<td>$50.00</td>
<td>$0.00</td>
<td>1.92</td>
<td>C5</td>
</tr>
<tr>
<td>HIGH TRANSMITTANCE GLAZING</td>
<td>$50.00</td>
<td>$0.00</td>
<td>1.40</td>
<td>C12</td>
</tr>
<tr>
<td>KNEE BOLSTER/PADDING</td>
<td>$100.00</td>
<td>$0.00</td>
<td>1.36</td>
<td>C20</td>
</tr>
<tr>
<td>LAMINATED OR SHATTER-PROOF GLAZING FOR ALL WINDOWS</td>
<td>$100.00</td>
<td>$0.00</td>
<td>1.12</td>
<td>C17</td>
</tr>
<tr>
<td>SEAT BELT WEBBING GRABBERS, FRONT</td>
<td>$40.00</td>
<td>$0.00</td>
<td>1.12</td>
<td>C33</td>
</tr>
<tr>
<td>SEAT BELT PRETENSIONER, FRONT</td>
<td>$100.00</td>
<td>$0.00</td>
<td>1.12</td>
<td>C31</td>
</tr>
<tr>
<td>ANTI-SUBMARING SEAT DESIGN</td>
<td>$40.00</td>
<td>$0.00</td>
<td>1.12</td>
<td>C33</td>
</tr>
<tr>
<td>HAZARD LIGHT ACTIVATE IN SEVERE CRASH</td>
<td>$50.00</td>
<td>$0.00</td>
<td>1.11</td>
<td>C39</td>
</tr>
<tr>
<td>HELMETS/HEAD BANDS FOR OCCUPANTS</td>
<td>$30.00</td>
<td>$10.00</td>
<td>0.90</td>
<td>C19</td>
</tr>
<tr>
<td>SEAT BELT BUCKLE MOUNTED ON SEAT (F)</td>
<td>$50.00</td>
<td>$0.00</td>
<td>0.89</td>
<td>C27</td>
</tr>
<tr>
<td>PEDESTRIAN FRIENDLY VEHICLE FRONT</td>
<td>$500.00</td>
<td>$0.00</td>
<td>0.85</td>
<td>C22</td>
</tr>
<tr>
<td>ABS BRAKES</td>
<td>$400.00</td>
<td>$0.00</td>
<td>0.83</td>
<td>C7</td>
</tr>
<tr>
<td>SIDE AIRBAG - FRONT SEAT, THORAX</td>
<td>$400.00</td>
<td>$0.00</td>
<td>0.81</td>
<td>C37</td>
</tr>
<tr>
<td>DRIVER AIRBAG</td>
<td>$600.00</td>
<td>$0.00</td>
<td>0.79</td>
<td>C24</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>COST (NET)</td>
<td>MAINT.</td>
<td>BENEFIT/ COST (HI-USE)</td>
<td>PAGE</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>--------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>CONSPICUOUS BODY COLOUR</td>
<td>$100.00</td>
<td>$0.00</td>
<td>0.70</td>
<td>C14</td>
</tr>
<tr>
<td>LOAD RESTRAINT DEVICES (TETHERS)</td>
<td>$100.00</td>
<td>$0.00</td>
<td>0.67(2.68)</td>
<td>C20</td>
</tr>
<tr>
<td>INTELLIGENT SPEED ADAPTION</td>
<td>$800.00</td>
<td>$0.00</td>
<td>0.60</td>
<td>C3</td>
</tr>
<tr>
<td>IMPROVED FOOT PROTECTION</td>
<td>$100.00</td>
<td>$0.00</td>
<td>0.55</td>
<td>C16</td>
</tr>
<tr>
<td>SPEED SENSITIVE INTERMITTENT WIPERS</td>
<td>$100.00</td>
<td>$0.00</td>
<td>0.51</td>
<td>C14</td>
</tr>
<tr>
<td>WIPERS AUTOMATIC</td>
<td>$100.00</td>
<td>$0.00</td>
<td>0.51</td>
<td>C7</td>
</tr>
<tr>
<td>ADJUSTABLE HEAD RESTRAINT</td>
<td>$100.00</td>
<td>$0.00</td>
<td>0.50</td>
<td>C26</td>
</tr>
<tr>
<td>HEAD PROTECTION PADDING</td>
<td>$200.00</td>
<td>$0.00</td>
<td>0.49</td>
<td>C18</td>
</tr>
<tr>
<td>CARGO BARRIER</td>
<td>$300.00</td>
<td>$0.00</td>
<td>0.47(1.89)</td>
<td>C16</td>
</tr>
<tr>
<td>EXTERNAL MIRRORS ELECTRICALLY ADJ</td>
<td>$200.00</td>
<td>$0.00</td>
<td>0.47</td>
<td>C13</td>
</tr>
<tr>
<td>BONNET AIRBAG FOR PEDESTRIAN PROT.</td>
<td>$500.00</td>
<td>$0.00</td>
<td>0.45</td>
<td>C21</td>
</tr>
<tr>
<td>SMART AIRBAG SYSTEM</td>
<td>$500.00</td>
<td>$0.00</td>
<td>0.39</td>
<td>C23</td>
</tr>
<tr>
<td>CRASH RECORDER</td>
<td>$500.00</td>
<td>$0.00</td>
<td>0.38</td>
<td>C37</td>
</tr>
<tr>
<td>MOBILE PHONE AVAILABLE IN EVENT OF ACCIDENT</td>
<td>$200.00</td>
<td>$0.00</td>
<td>0.38</td>
<td>C40</td>
</tr>
<tr>
<td>SEAT BELT LOAD LIMITERS, REAR</td>
<td>$20.00</td>
<td>$0.00</td>
<td>0.37(1.85)</td>
<td>C31</td>
</tr>
<tr>
<td>ALCOHOL/DRUG INTERLOCK</td>
<td>$200.00</td>
<td>$0.00</td>
<td>0.36</td>
<td>C1</td>
</tr>
<tr>
<td>SEAT BELT D-RING HEIGHT ADJUSTABLE</td>
<td>$100.00</td>
<td>$0.00</td>
<td>0.33</td>
<td>C29</td>
</tr>
<tr>
<td>MAYDAY DISTRESS CALL IN SEVERE CRASH</td>
<td>$500.00</td>
<td>$0.00</td>
<td>0.30</td>
<td>C39</td>
</tr>
<tr>
<td>CRUISE CONTROL</td>
<td>$150.00</td>
<td>$0.00</td>
<td>0.27</td>
<td>C2</td>
</tr>
<tr>
<td>ENGINE IMMOBILISER</td>
<td>$300.00</td>
<td>$0.00</td>
<td>0.25</td>
<td>C38</td>
</tr>
<tr>
<td>AUTOMATIC TRANSMISSION</td>
<td>$200.00</td>
<td>$0.00</td>
<td>0.24</td>
<td>C2</td>
</tr>
<tr>
<td>ADJUSTABLE LUMBAR SUPPORT</td>
<td>$50.00</td>
<td>$0.00</td>
<td>0.24</td>
<td>C5</td>
</tr>
<tr>
<td>ADJUSTABLE STEERING COLUMN</td>
<td>$100.00</td>
<td>$0.00</td>
<td>0.24</td>
<td>C6</td>
</tr>
<tr>
<td>ADJUSTABLE DRIVERS SEAT (MULTI-FUNCTION)</td>
<td>$200.00</td>
<td>$0.00</td>
<td>0.24</td>
<td>C4</td>
</tr>
<tr>
<td>COOLED/HEATED DRIVERS SEAT</td>
<td>$200.00</td>
<td>$0.00</td>
<td>0.24</td>
<td>C4</td>
</tr>
<tr>
<td>SIDE AIRBAG - FRONT, HEAD-PROTECTING (CURTAIN)</td>
<td>$400.00</td>
<td>$0.00</td>
<td>0.20</td>
<td>C34</td>
</tr>
<tr>
<td>HEADWAY RADAR FOR CLOSING SPEEDS</td>
<td>$800.00</td>
<td>$0.00</td>
<td>0.20</td>
<td>C8</td>
</tr>
<tr>
<td>FRONT PASSENGER AIRBAG</td>
<td>$400.00</td>
<td>$0.00</td>
<td>0.19(0.97)</td>
<td>C25</td>
</tr>
<tr>
<td>FUEL AND ENGINE CUT-OFF (SEVERE CRASH)</td>
<td>$100.00</td>
<td>$0.00</td>
<td>0.19</td>
<td>C38</td>
</tr>
<tr>
<td>SEAT BELT, CENTRE REAR 3-POINT</td>
<td>$100.00</td>
<td>$0.00</td>
<td>0.19(1.86)</td>
<td>C28</td>
</tr>
<tr>
<td>HEAD REST. FOR REAR OUTBOARD SEATS</td>
<td>$80.00</td>
<td>$0.00</td>
<td>0.18(0.70)</td>
<td>C27</td>
</tr>
<tr>
<td>POWER STEERING</td>
<td>$300.00</td>
<td>$0.00</td>
<td>0.16</td>
<td>C9</td>
</tr>
<tr>
<td>SEAT BELT WEBBING GRABBERS, REAR</td>
<td>$40.00</td>
<td>$0.00</td>
<td>0.15(0.74)</td>
<td>C32</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>COST (NET)</td>
<td>MAINT.</td>
<td>BENEFIT/COST (HI-USE)</td>
<td>PAGE APP C</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>--------</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>SEAT BELT PRETENSIONERS, REAR</td>
<td>$100.00</td>
<td>$0.00</td>
<td>0.15(0.74)</td>
<td>C32</td>
</tr>
<tr>
<td>HEAD RESTRAINTS FOR ALL REAR SEATS</td>
<td>$120.00</td>
<td>$0.00</td>
<td>0.14(0.70)</td>
<td>C26</td>
</tr>
<tr>
<td>SIDE AIRBAG, REAR, THORAX</td>
<td>$400.00</td>
<td>$0.00</td>
<td>0.12(0.61)</td>
<td>C36</td>
</tr>
<tr>
<td>INFLATABLE SEAT BELT</td>
<td>$200.00</td>
<td>$0.00</td>
<td>0.11</td>
<td>C30</td>
</tr>
<tr>
<td>INDEPENDENT REAR SUSPENSION</td>
<td>$300.00</td>
<td>$0.00</td>
<td>0.09</td>
<td>C8</td>
</tr>
<tr>
<td>AUTO DIMMING REAR VIEW MIRROR</td>
<td>$200.00</td>
<td>$0.00</td>
<td>0.06</td>
<td>C12</td>
</tr>
<tr>
<td>CHILD SEAT INTEGRATED</td>
<td>$500.00</td>
<td>$0.00</td>
<td>0.06(0.28)</td>
<td>C25</td>
</tr>
<tr>
<td>HARNESS SEAT BELT FOR ADULTS (4/6PT)</td>
<td>$400.00</td>
<td>$0.00</td>
<td>0.04</td>
<td>C28</td>
</tr>
<tr>
<td>SIDE AIRBAG, REAR, HEAD-PROTECTING</td>
<td>$400.00</td>
<td>$0.00</td>
<td>0.04(0.20)</td>
<td>C35</td>
</tr>
<tr>
<td>NAVIGATION SYSTEM (GPS)</td>
<td>$1,500.00</td>
<td>$0.00</td>
<td>0.03</td>
<td>C3</td>
</tr>
<tr>
<td>TRACTION CONTROL</td>
<td>$700.00</td>
<td>$0.00</td>
<td>0.02</td>
<td>C9</td>
</tr>
<tr>
<td>RUN FLAT TYRES</td>
<td>$400.00</td>
<td>$0.00</td>
<td>0.01</td>
<td>C10</td>
</tr>
<tr>
<td>ANTI FOGGING (HEATED) EXT MIRRORS</td>
<td>$200.00</td>
<td>$0.00</td>
<td>0.01</td>
<td>C13</td>
</tr>
<tr>
<td>TYRE PRESSURE MONITORING</td>
<td>$400.00</td>
<td>$0.00</td>
<td>0.00</td>
<td>C10</td>
</tr>
<tr>
<td>DRIVING LIGHTS</td>
<td>$100.00</td>
<td>$5.00</td>
<td>0.00</td>
<td>C11</td>
</tr>
<tr>
<td>FOG LAMPS</td>
<td>$100.00</td>
<td>$5.00</td>
<td>0.00</td>
<td>C11</td>
</tr>
<tr>
<td>AIR CONDITIONING/CLIMATE CONTROL</td>
<td>$1,200.00</td>
<td>$40.00</td>
<td>0.00</td>
<td>C1</td>
</tr>
</tbody>
</table>

These results are illustrated in the following graphs.
Figure 1. Highest Benefit/Cost (B/C) Ratios
Figure 2. B/C higher than driver airbag
Figure 3. B/C similar to driver airbag
Figure 4. B/C Moderately less than driver airbag
Figure 5. B/C substantially less than driver airbag
Figure 6. Lowest B/Cs
Effectiveness in reducing serious crash outcomes

Safety features may also be evaluated by considering how they might reduce the number of serious or fatal crashes. This involves two parameters that are documented in Appendix C - the proportion of all serious and fatal crashes that are likely to be influenced by the safety features and the proportion of influenced crashes that are likely to be saved by the particular safety feature. For a driver airbag this works out at 15% (60% of crashes and 25% effectiveness in these crashes). The effectiveness of other safety features that are commonly available as optional equipment are shown in Figure 7. Also shown are the net costs of these items, based on typical initial cost less the extra resale value after 3 years.

![Diagram](image_url)

Figure 7. Relative effectiveness in serious crashes

Discussion

Using strict economic analysis techniques and assuming average usage, the benefit/cost ratios of some common safety features are relatively poor. Only 13 (out of 69 evaluated) features exceed unity (benefits exceed costs). Even a driver airbag, which in NCAP tests typically reduce the risk of serious head injury by half, only achieves a B/C of 0.8.

This suggests there are traps in simply using the economic analysis methods. These calculations are for an "average" vehicle. Business vehicles typically travel higher annual kilometres and their "breakeven" point would be a B/C of no more than 0.5. A further 13 safety features have a B/C of 0.5 or more.
Some features are more worthwhile under different usage, such as higher occupancy of non-driver seats. A further 9 safety features exceed a B/C of 0.5 if high usage is assumed.

When faced with a decision on whether to purchase optional safety features, it may be more appropriate to simply consider the effectiveness of the feature in reducing serious/fatal injuries, as set out in figure 7.

The analysis did not take into account non-safety benefits. For example, air conditioners and mobile phones would likely be purchased for non-safety reasons. Also it is important that fleet purchasers recognise the trauma and disruption that a serious or fatal road accident can have on an organisation - these non-tangible effects are not taken into account in the benefit/cost calculations.

Priority safety features

Priority safety features are listed below. These either have favourable benefit cost ratios, when compared with a driver airbag or are effective at reducing serious crashes. In some cases above average exposure has been assumed, as might be expected with fleet vehicles. With some features it is sometimes difficult to establish whether a particular vehicles has them as standard or optional equipment.

Features that are readily available

- driver airbag (fortunately most models now have a driver airbag as standard)
- side airbag for driver and front passenger
- ABS brakes
- a cargo barrier in wagons and vans
- a front passenger airbag

Features that are available on some vehicles but are not common

- headlights “on” alarm or automatic headlights or daytime running lights
- seat belt load limiters for front seats
- side airbags for the rear outboard seats
- speed alarm (set by driver)
- seat belt pretensioner for front seats
- anti-submarining seat design
- hazard lights activate in a severe crash

Features that are rarely available in Australia

- top speed limiter (set at 120km/h)
- seat belt interlock (smart alarm)
- high transmittance glazing
• knee bolster/padding
• laminated or shatter-proof glazing for all windows

It may take pressure from fleet and government purchases to introduce the latter safety features since there would be little consumer awareness (or interest) in them.

Conclusions

A comprehensive range of vehicle safety features has been evaluated. Road safety research literature has been analysed to determine, where possible, the likely influence of these safety features on road accidents. Economic analysis methodology (as used by the RTA of NSW for evaluating items such as proposed roadworks) has been applied to each safety feature to derive an estimate of long term benefits and costs. The resulting benefit/cost ratios contained some surprises - features commonly regarded as cost effective did not rank high in the list. Further analysis suggested that adjusting for exposure (such as higher occupancy of certain seats) results in more favourable ranking of these features.

It is recommended that new vehicle purchasers, particularly fleets, be encouraged to place a higher priority on safety in the selection process. Greater awareness of safety features that have a significant influence on serious crashes would go some way towards this goal.

References

References for safety features are set out in Appendix A (bibliography). This section covers additional references in the main report.

Appendix A - Annotated Bibliography
VEHICLE SAFETY BIBLIOGRAPHY

CATEGORY K Crashworthiness and compatibility

K01 Crashworthiness research at the NHMRC Road Accident Research Unit
 Anderson R and McLean J
 Proceedings of the Developments in Safer Motor Vehicles Seminar
 Development of free-flight headform tests and legform tests to evaluate the injury potential of vehicle fronts. Bullbar tests using the free-flight headform impacting at 40km/h. Three positions on the vehicle were impacted. The steel bullbar produced peak deceleration between 593g and 1069g. The aluminium bullbar produced peak decelerations between 319g and 472g. An innovative plastic protection device produced peak decelerations between 168g and 307g and the standard vehicle (Toyota Prado) ranged from 148g to 325g. Other work reported included reconstruction of fatal pedestrian accidents and the effect of padding the upper interior of vehicles (see separate paper by McLean).

K02 Advanced designs for side impact and rollover protection
 Bloch B
 Proceedings of the 16th ESV
 Advanced design features considered include: foam-filled tubular member strengthened doors with full perimeter overlap and multiple latches, stronger, wrap-around seats with taller head restraints and intergal seat belts, seat belt pre-tensioners that activate in side and rollover impacts, padded interior surfaces, side airbags and improved side window glazing. Upgrading of several FMVSS are recommended. The objectives of occupant protection are to: (a) encourage deflection of the striking vehicle away from the struck vehicle, (b) minimise intrusion into the occupant’s survival space, (c) reduce the velocity differential between the struck vehicle and the occupant kinematic movements and (d) restrain and cushion the occupant's head and torso, or allow contact with energy absorbing materials to maximise distribution of contact forces.

K03 In-depth analysis of offset frontal crash tests external aggressivity
 Bloch J and Chevalier M
 Proceedings of the 15th ESV
 Examines the potential for assessing aggressivity based on the deformation of the deformable barrier used in the EEVC offset crash test. It was found that the barrier very often bottomed out and therefore a change to the barrier characteristics may be needed to successfully proceed with this concept.

K04 The importance of matching restraint systems to the accident severity
 Brambilla L
 29th International Symposium on Automotive Technology and Automation
 Mercedes Benz approach to restraint system design. Optimum performance requires a smart system. For example, the same airbag trigger threshold is not appropriate in all circumstances and the seat belt tension could be carefully adjusted to optimise protection. Seat belt force limiters need to work in conjunction with pre-tensioners. The next generation of restraint systems will also adjust according to the occupant's characteristics (size, weight, sex and age). The demands on the restraint system increase as the vehicle gets smaller and there is less space for energy absorption. There is the potential to increase injury in lower severity crashes in order to cope with the demands of high severity crashes unless crash and occupant parameters are taken into account in the design and operation of the restraint system.
VEHICLE SAFETY BIBLIOGRAPHY

K05 Compatibility - the aggressiveness of cars in real world car to car crashes
Byard N, Fails A and Langdon M
Proceedings of the 16th ESV
Injuries to occupants in opposing vehicles are compared in order to assess aggressiveness. Structural features which contribute to injury outcomes are also assessed.

K06 The Development and Estimation of Aggressivity Ratings for Australian Passenger Vehicles Based on Crashes During 1987 to 1995
Cameron M H, Newstead S V and Le C M
1998
Methodology for comparing “aggressivity” by studying the outcome of two vehicle collisions. Analysis of NSW and Victorian crash data and assigned of aggressivity ratings to popular vehicle models (in a similar manner to Used Car Safety Ratings)

K07 The effectiveness of ADRs aimed at occupant protection.
Cameron M
1987
Seminar on Structural Crashworthiness & Property Damage Accidents.
This paper summarises various reports by Cameron and others. It provides further cost/benefit information about air bag systems. It was concluded that drivers-side air bags had a potential to save $20.84 per car per annum due to reduced injuries. It was noted that the cost of installation of air bags was falling rapidly. Also the point was made that, in a country with high seat belt usage rates, other countermeasures such as seat belt pre-tensioners might be an effective alternative to air bags.

K08 Ejection and the effect of ADR 2 for Door latches and Hinges.
Cameron M
FORS CR 15 September 1980.
This study found a decreased risk of occupant ejection (for both belted and unbelted occupants) for recent model vehicles in the study. These vehicles had improved door latch and hinge design, compared with older vehicles. The most recent vehicles studied were subject to ADR 2. Another conclusion was that ejection doubles the risk of severe/fatal injury compared with being retained in the car under the same crash circumstances. The effectiveness of ADR 2 in roll-over crashes was inconclusive.

K09 Side impacts and the effect of ADR 29 for side door strength.
Cameron M
FORS CR 14 April 1980.
The study concluded that there was no statistically significant evidence that ADR 29 reduces the risk of injury to front outboard seat occupants seated on the impact side in side impacts. However, the study was considered to be inconclusive for several reasons. One of the issues was that all types of side impact were studied whereas the ADR could only be expected to be effective in certain types of side impact where loads are concentrated of the door.
K10 *Frontal impacts and the effect of ADRs 10A and 10B for steering columns*

Cameron M
FORS CR 7 July 1979.
This study concluded that ADR 10 is effective in reducing the severity of injury to some types of drivers who strike the steering assembly in frontal impacts, particularly those on rural roads. Possible increases in injuries in certain cases - particularly with small cars were also reported.

K11 *Investigation of the effect of bull-bars on vehicle-pedestrian collision dynamics.*

Chiam H & Tomas J
1980

K12 *Car crash theory and tests of airbag bumper systems*

Clark C and Young W
Issues in Automotive Safety Technology', SAE
Evaluation of the potential for decreasing crash severity by mounting a large airbag on outside of a car. Tests of a prototype system on an Oldsmobile sedan indicated that the airbag absorbed 19% of the crash energy and reduced the equivalent barrier impact speed from 48.5km/h to 43.5km/h during a front impact. The device was ineffective in a simulated side impact due to the deformation of the car structure. Potential problems include reliable detection of an imminent crash; rapid airbag inflation; airbag storage (and cost of minor collisions?) and controlled deflation of the airbag (to dissipate the crash energy).

K13 *3001 The final odyssey*

Clarke AC
Book (science fiction)
1997

At the end of this science fiction novel the author gives background on some of the science concepts raised in the novel: "An ‘inertialess drive’, which would act exactly like a controllable gravity field, had never been discussed seriously outside the pages of science fiction until very recently. But in 1994 three American physicists did exactly this, developing some ideas of the great Russian physicist Andrei Sakharov. ‘Inertia as a Zero-Point Field Lorentz Force’ by B. Haisch, A. Rueda & H. E. Puthoff (Physics Review A, February 1994) may one day be regarded as a landmark paper...if [the] theory can be proved, it opens up the prospect - however remote - of anti-gravity, ‘space drives’ and the even more fantastic possibility of controlling inertia...The good news is that traffic accidents would be virtually impossible; automobiles - and passengers - could collide harmlessly at any speed.”

K14 *Side impact protection opportunities*

Dalmotas D, Withnall C and Gibson T
Proceedings of the 15th ESV
3 vehicle models were evaluated for side impact protection. In one case the vehicle was modified to provide enhanced side impact protection in the form of additional padding. It was found that “substantial improvements in side impact protection can be achieved, at minimal added cost and with little encroachment of interior space, through the use of innovative padding schemes.”
VEHICLE SAFETY BIBLIOGRAPHY

K15 Automotive load protection
Glew J
Proceedings of the Developments in Safer Motor Vehicles Seminar
Review of the development of cargo barrier standards. Loads generated in various types of crashes.

K16 Activities of the New Car Assessment Program in the United States
Hackney J, Kahane C and Chan R
Proceedings of 15th ESV
Delta-Vs in real world crashes (median at about 60km/h for fatalities to restrained drivers in frontal crashes 1988-94). Probability of severe head and chest injury, NCAP results and trends. See also 'The New Car Assessment Program - Historical review and effect', Occupant Containment and Methods of Assessing Occupant Protection in the Crash Environment, SAE SP-1045, Warrendale, February 1994.

K17 Effects of car and seat on the loading of occupant's neck in rear impacts
Haland Y, Lindh F, Fredriksson R and Svensson
29th International Symposium on Automotive Technology and Automation,
Mechanism of neck injury in low speed rear crashes. It is proposed that the upper end of the cervical spine can be forced into an S-shape when the body and head move by different amounts. The speed and degree to which this happens is related to the risk of neck injury (whiplash). Two small cars which, from Swedish insurance claims, demonstrate a low and high risk of whiplash were analysed, along with prototype seat designs. The horizontal distance between the head and the head restraint was found to be important but an over-rigid seat (as in one of the prototypes) can defeat a good head restraint position.

K18 Characteristics of fatal single vehicle crashes
Haworth N, Vulcan P, Bowland L and Pronk N
MUARC Reports 120 and 121
Investigation of 127 single-vehicle crashes occurring within a 200km radius of Melbourne. 75% of crashes involved an impact with a tree or pole or both (similar for urban and rural). Half the tree impacts and one third of the pole impacts were on the offside of the road. For drivers aged 60 or more a pre-existing medical condition was the most likely cause of death (e.g. 7 out of 10 coroners briefs indicated the cause of death was heart disease). 20% of the case vehicles were manufactured prior to 1978 compared to 9% in a control group: risk factor = 2.3 [note these vehicles make up just 4% of the NSW fleet and a smaller percentage of annual VKT]. In 13% of crashes the fatally injured occupant was not wearing a seat belt compared with 2% of controls: risk factor = 8.4. In 36% of crashes the driver was driving someone else's car, compared to 7% of controls : risk factor = 4.5 [familiarity issue, standardisation of controls].

K19 Passenger car roof crush strength requirements
Henderson M and Paine M
FORS CR 176
Extensive literature review, analysis of rollover crashes in the FORS fatality file, analysis of the kinetics of rollover crashes and the forces on occupants, recommendations for improvements in vehicle design. FMVSS216 found to be deficient - lateral deformation of the roof may be more important than "roof crush" in some crashes. See extract Extract on WWW at http://www1.tpgi.com.au/users/mpaine/rollover.html.
Dispelling the misconceptions about side impact protection

Hobbs C

Advances in Occupant Protection Technologies for

Conventional methods to improve side impact protection, such as strengthening the structure and adding padding are not necessarily correct. Guidelines developed by TRL include: maintain a vertical intrusion profile for the lower part of the door; interaction between door and sill can affect the profile; base of b-pillar can affect the profile; minimise the stiffness and mass of the door components which might contact the occupant; avoid variations in the vertical stiffness of the system since these can result in load concentrations; a "high door velocity with bounce" (?) can improve the dynamics of the occupant; the optimum stiffness of padding for the chest should be low - padding for the pelvis can be stiffer.

Compatibility of cars in frontal and side impact

Hobbs C, Williams D and Coleman D

Proceedings of the 15th ESV

Results of TRL research are presented. Car to car crash tests, including side impacts are evaluated. A comparison is made between the EEVC and NHTSA side impact tests. "It is still too early to draw firm conclusions about compatibility".

NHTSA's vehicle aggressivity and compatibility research program

Hollowell W and Gabler H

Proceedings of the 16th ESV

An update on NHTSA's research program. "Design modifications which minimise injuries in one vehicle may actually accentuate injury levels in the collision partner". "...improved vehicle compatibility will result in correspondingly large reductions in crash related injuries". (see also the paper of the same title in the Proceedings of the 15th ESV - a very wide range of "aggressivity" is observed within vehicles of the same class - notable that, in the large car class, the Volvos had the best rating (around 15) and the Mercedes Marquis had the highest (around 60)).

Improvement of crash compatibility between cars

Faerber E

Proceedings of the 16th ESV

In-depth crash studies are used to identify the most important problems related to compatibility. Experimental car to car impacts are used to replicate some real-world crashes and computer simulations are used to determine the effects of varying stiffness and mass of the subject vehicles.

Vehicle Occupant Protection: Four-wheel-drives, utilities and vans

Fildes B, Kent S, Lane J, Lenard J and Vulcan P

FORS CR 150

Literature review, mass data analysis and crashed vehicle study (144 cases - too small for meaningful analysis). Almost half of 4WD crashes were rollovers. Mean delta-V was 35.5km/h (compared with 45.4 for passenger cars). Minor upper limb injuries were the most common injury. Leg injuries were also common. Countermeasures developed for passenger cars should also be effective for these vehicles.
K25 Side impact regulation benefits for Australia
Fildes B, Dyte D, Carr D, Seyer K and Digges K
Proceedings of the 15th ESV
Harm analysis of the benefits of introducing either FMVSS 214 or ECE 95 in Australia. It was estimated that adoption of either standard would save about $150 per vehicle. The Australian motor industry advised that the average cost of compliance was $100 per vehicle therefore the side impact standard were considered to be (marginally) cost effective. See also FORS CR 154 Side Impact Regulation Benefits.

K26 Consumer crash test programs - harmonisation and injury reduction
Griffiths M
Proceedings of the 15th ESV
Comparison of Australian and US NCAP programs. Differences between Australian and US vehicles. Occupational health issues. Based on Driver Protection ratings from analysis of real world crashes, it is estimated that if the all car average was raised to that of the best performing popular vehicles then there would be 46% reduction in the likelihood of serious injury in all crashes.

K27 United Kingdom - New Car Assessment Program
Hobbs C A
Proceedings of the 15th ESV
Description of the development of the NCAP program in Europe. The EEVC decided on offset frontal, side impact and pedestrian impact tests.

K28 Experimental program of automotive safety assessment in Japan
Horigome N and Naito M
Proceedings of the 15th ESV
Description of the development of the NCAP program in Japan. OSA decided on the 56km/h full frontal crash test. Steering wheel and dash movement were assessed as indicators of structural performance.

K29 Evaluation of frontal crash tests against a deformable barrier
Klanner W, van West F and Felsch B
Proceedings of the 16th ESV
Modifications to existing offset crash test procedures are considered in order to assess compatibility and aggressivity of the test vehicle.

K30 Applying Computer Aided Engineering to Improve Vehicle Safety
Loo M and Brandini M
Proceedings of the Developments in Safer Motor Vehicles Seminar
Use of advanced computing techniques in the design of passenger cars. Integration of vehicle structural models with occupant restraints models. Simulation of regulatory and consumer crash tests.
VEHICLE SAFETY BIBLIOGRAPHY

K31 The Validation of the EEVC Frontal Impact Test Procedure
Lowne R W 1996
Proceedings of the 15th ESV
Development of the offset crash test as used by IIHS, Euro-NCAP and ANCAP. Effects of vehicle type, vehicle size and impact speed. Repeatability of crash tests. Good repeatability was found, particularly for upper body parameters (variations in footwell deformation and dummy foot position may account for some variation in lower leg injuries).

K32 When it comes to the crunch: the mechanics of car collisions
Murray NW 1994
World Scientific.
A thorough review of the physics of car crashes, with comments on crashworthiness in various types of collisions. Accident statistics relevant to vehicle factors are presented in an appendix.

K33 Automobile Safety Information
National Organisation for Automotive Safety 1998
OSA, Tokyo.
Comprehensive layman's guide to safety features on vehicles and the results of full-frontal crash tests of popular cars in Japan. Safety features tabulated are: ABS brakes, Driver and passenger front airbags, side airbags, adjustable seat belt anchors, seat belt pre-tensioners, seat belts with child seat locking mechanisms and integrated child seats (the latter are standard on Camry Gracia, Chrysler Voyager SE, Volvo S/V70 and Volvo 940 and are optional on a few others).

K34 Vehicle Crashworthiness Ratings by Year of Vehicle Manufacture
Newstead S, Cameron M & Le 1997
Monash University Accident Research Centre
Technical report accompanying the brochure "User Car Safety Ratings".

K35 New vehicle crashworthiness evaluations by the IIHS
Proceedings of the 15th ESV
Description of IIHS offset crash test procedures and evaluation methodology.

K36 Guidelines for crashworthiness ratings
Paine M 1998
Report for Australian New Car Assessment Program.
VEHICLE SAFETY BIBLIOGRAPHY

K37 Crash simulation for crashworthiness design of passenger cars

Pries H, Sinnhuber R and Zobel R
Automotive Passenger Safety,
Volkswagen's vehicle design procedures now include sophisticated computer simulations of a variety of crashes. These can be used to optimise energy absorption, passenger compartment structure and restraint system performance (the latter was not integrated at the time the paper was prepared). An aim is "to optimise the crash behaviour of cars to minimise the total of injury-related costs in traffic [accidents]." The potential for computer simulations to be used in place of (expensive) compliance test is raised by the authors [they may be a case for higher standards in the case of compliance established solely by computer simulation

K38 Rollover crash study - vehicle design and occupant injuries

Rechnitzer G and Lane J
Proceedings of the 15th ESV
In-depth investigation of 43 rollover crashes. Ejection and partial ejection were significant factors in fatal rollovers. Broken side windows and roof lateral deformation can contribute to partial ejection of seat-belted occupants. Seat belts are only partially effective in rollovers and some buckle design may allow unlatching during the rollover. Lack of roof integrity, particularly with some 4WDs, is a problem. Unpadded roof structures contribute to scalp lacerations, skull fractures and brain injury. Spinal injuries result from: loss of vertical occupant space (including lateral roof deformation), impact with the ledge at the join between the door and the roof (cantrail) and lack of interior padding. Severe injuries only appeared to occur to occupants seated where significant roof contact with the ground occurred - the severe injuries cannot be ascribed to crash severity alone. Design improvements recommended are: improved side window integrity, increased roof pillar strength (particularly to resist side sway), interior padding, modify the design of the roof cantrail, improved seat belts and improved door integrity. See also MUARC Report 65, December 1994.

K39 Review of in-depth crash research

Ryan G & Mclean A
FORS CR 79
This report includes advice and recommendations for establishing in-depth crash studies.

K40 An in-depth study of rural road crashes in South Australia.

Ryan G et al
FORS CR 78
Contains detailed information about 80 crashes. Analysis does not cover vehicle factors in detail but information could be derived from the accident descriptions.

K41 Investigation of factors pertinent to offset-frontal impacts

Schneider L
Proceedings of the 16th ESV
130 offset frontal crashes were investigated in Michigan. Instrusion of other measurements were made. Particular emphasis was given to the factors which caused disabling injuries to the ankles and feet.
K42 Australian Design Rules - current and future developments
Seyer K 1998
Proceedings of the Developments in Safer Motor Vehicles Seminar
Development of ADRs 69 and 73 (frontal crash testing) and ADr72
(side impact), compatibility and pedestrian safety. Estimated
benefits of the offset crash test of ADR73 range from 15% to 23%
reduction in "frontal Harm", depending on airbag usage. Problems
with using the deformable barrier for higher speed (64km/h)
offset tests and tests of heavier vehicles, such as
four-wheel-drives, are raised. It is claimed that this can drive
manufacturers to produce stiffer and heavier vehicles (recent
ANCAP results tend to counter this claim). See also FORS CR 165
Benefits of a frontal offset regulation.

K43 Vehicle to Vehicle Compatibility in Real-world Accidents
Shearlaw A & Thomas P 1996
Proceedings of the 15th ESV
Real world accidents are reviewed to determine how
structural differences contribute to injuries. The definition of
"compatibility" needs to consider geometric differences in the
lateral and vertical planes, as well as stiffness and mass.

K44 Optimisation of crash pulse through frontal structural design
Sparke L 1996
Proceedings of the 15th ESV
The range of real life accidents and computer
simulations are used to produce a front structure which will
achieve an optimised crash pulse over the spectrum of collision
types. Measures which apparently reduce injury risk in some
situations may create an increased injury risk in other
situations.

K45 Development a frontal offset test procedure based on real-world crashes
Stucki S, Ragland C and Hollowell W 1998
Proceedings of the 16th ESV
Analysis of NASS and FARS data and comparison with several types of
offset crash tests. "The population of interest for future
safety improvements is drivers in frontal collisions with airbag
restraints". "It appears that the oblique impact with over 50%
overlap produces the most severe responses...". A moving
deformable barrier is being evaluated.

K46 Bullbar design for airbag equipped vehicles
Sullivan J 1996
Proceedings of the 15th ESV
Report on Ford's development work on its "Smartbar". Airbag deployment i:
assessed. The design is intended to produce similar pedestrian
impact kinematics to the standard vehicle, while reducing the
risk of immobilisation in the event of a high-speed impact with
a large animal. Using MADYMO modelling it is claimed that
pedestrian HIC and chest deceleration are similar up to impact
speeds of 40km/h (details are not presented). In impact tests
with a 75kg kangaroo dummy at 100km/h the Smartbar prevented the
disabling damage to the vehicle which occurred with the standard
vehicle.
K47 Current research in rollover and occupant protection
Summers S, Rains G and Wilkie D
Proceedings of the 15th ESV
NHTSA's research program. Countermeasures include ejection resistant glazing, improved door latches, advanced roof crush testing, dynamic testing of restraint systems and interior padding.

K48 Modelling of a unique frontal car structure
Wittman W and Kriens R
Proceedings of the 16th ESV
A range of frontal crashes are evaluated. Conventional frontal structures are found to be deficient if not axially loaded. A new design, incorporating cables to distribute the loads between both longitudinal members is found to produce almost the same stiffness for all overlap percentages and impact angles. (See also Wittman and Kriens 'A cable supported frontal car structure for offset crash situations' Proceedings of the 15th ESV)

K49 New perspectives on car crush behaviour in frontal crashes
Wood D and O'Riordain S
29th International Symposium on Automotive Technology and Automation
Crush behaviour of eight cars is analysed and several stages of crush are noted. A stiffer initial crush region can delay the onset of occupant compartment intrusion but care is needed to avoid increasing injury in lower severity crashes.

K50 Compatibility requirements for cars in frontal and side impact
Wykes N, Edwards M and Hobbs C
Proceedings of the 16th ESV
Research on the extent to which compatibility might influence injury outcome. Experimental crash test research and accident analysis to examine the influence of mass, stiffness, structural interaction and geometry. An aim is to develop crash test requirements which assess compatibility.

K51 Improved vehicle frontal protection structure for pole collisions
Zivkovic G
Proceedings of the 16th ESV
Collisions which produce concentrated loads on the vehicle are 3 times more likely to be fatal than other types of collisions. Structural modifications to better deal with this type of collision are discussed.

K52 Contribution of vehicle defects to crashes
Paine M
Project report prepared for National Road Transport Commission
None of the published studies provide sufficient information to determine the contribution of (different types of) defects to crashes. It is evident that the (overall) contribution of defects to crashes is small [more recent work suggest between 10% and 20% causal or severity increasing]. Even though the potential savings might be small the cost of programs to reduce the number of defective vehicles can also be relatively small and the lack of good information about the contribution of defects to crashes should not be taken as an indication that roadworthiness programs are not cost-effective.
VEHICLE SAFETY BIBLIOGRAPHY

K53 Research and development project summaries

NHTSA 1998

NHTSA web site
Descriptions of NHTSA's current research projects on crashworthiness. Notable projects are: door latch integrity, improved glazing, improved frontal protection, upgrade of rollover protection, child safety, upgrade fuel system integrity, seat back strength, injury mechanisms in children, neck injury, lower extremity injury, upper extremity injury from airbags, out-of-position occupants, vehicle aggressivity and fleet compatibility, upgraded side crash protection, pedestrian and bicyclist safety, motorcycle safety.

K54 Road safety strategy: current problems and future options

UK Dept of Environment, Transport and the Regi 1997

UK DETR
Outline of road safety problems in the UK. Description of current activities. Future measure:
Pedestrians - 1038 fatalities (25% of all road fatalities). EU requirements should reduce pedestrian fatalities by 10% by 2005 and 20% by 2010, if implemented by 2002. Estimated $20-30 per car. This would effectively ban (rigid metal) bullbars. Speed limit alarms in cars would help.
Bicyclist - 213 fatalities Claimed casualty rate per km is 13 times that of car occupants. Under-reporting is a problem. Could be a large increase in cycling over next few years. Helmets main measure - increasing wearin rate from 16% to 80% could save 24% of fatalities ans serious injuries. Improved vehicle braking and lighting, plus truck side guards could reduce cyclist casualties by 10% by 2010. Bells and lights could be made compulsory. Reflective clothing recommended.
Car occupants - 1749 fatalities (reductions are to car occupants casualties of car occupants fatalities by 2010). NCAP (15-20%, $40-$60 per car), front-under run guards on tru (6%, cost $200/truck), seat belt interlocks (8%, $4 per car), rear impact protection (rear structure, seats and head restraint) (slight injuries 10%), smart restraints (4-8%), fire protection (1%).
Motorcyclists - 445 fatalities. Improved helmets (20%), leg protection (40%, $200), airbags (20%, $600), NCAP for motorcycles (25%), daytime running lights (4%).
Trucks - 597 fatalities. Stronger cabs + seat belts used (47% of truck occupant fatalities)
Buses and Coaches - 35 fatalities. No evaluated measures. Medical services - 17% of fatalities were judged to have been potentially preventable by more timely medical treatment.

K55 Safety benefits of improvements in vehicle design since ANCAP

Hendrie D, Lyle G and Haley J 2001

Proceedings of 17th ESV

K56 A systems modelling method: for estimation of HARM

Kuchar A 2001

Proceedings of 17th ESV
Modelling injury risk for collisions between large and small vehicles. Predicted reduced stiffness of larger vehicle can reduce AIS3/4 injuries by 21%. Hig severities unaffected.

K57 VEHICLE PROPERTIES AFFECTING AGGRESSIVITY

LES M 2001

ROAD SAFETY 2001, MUARC, MELBOURNE
VEHICLE SAFETY BIBLIOGRAPHY

K58 **DAYTIME RUNNING LIGHTS - A NORTH AMERICAN SUCCESS STORY**
BERGKVIST P
PROCEEDINGS OF THE 17TH ESV
VEHICLE TO VEHICLE - 5% REDUCTION, PEDESTRIANS 9%. ALSO RESULTS OF OTHER STUDIES.

K59 **NHTSA’S RESEARCH PROGRAM FOR AGGRESSIVITY AND COMPATIBILITY**
SUMMERS S
PROCEEDINGS OF THE 17TH ESV

K60 **EEVC RESEARCH ON COMPATIBILITY**
FAERBER E
PROCEEDINGS OF THE 17TH ESV

K61 **DEVELOPMENT OF CRITERIA AND STANDARDS FOR COMPATIBILITY**
ZOBEL R
PROCEEDINGS OF THE 17TH ESV

K62 **TEST PROCEDURES TO EVALUATE COMPATIBILITY**
MIZUNO K
PROCEEDINGS OF THE 17TH ESV

K63 **ADVANCED ROOF DESIGN FOR ROLLOVER PROTECTION**
FRIEDMAN D
PROCEEDINGS OF THE 17TH ESV

K64 **COMPARISON OF EURO NCAP RESULTS WITH FOLKSAM RATINGS**
LIE A, KULLGREN A AND TINGVALL C
PROCEEDINGS OF THE 17TH ESV

K65 **COMPARISON OF EURO NCAP WITH INJURY CAUSATION IN ACCIDENTS**
FAILS A AND MUTON R
PROCEEDINGS OF THE 17TH ESV

K66 **AGGRESSIVITY VARIABLES AND THEIR SENSITIVITY IN RATINGS**
LAINE V, ERNVALL T, CAMERON M AND NEW
PROCEEDINGS OF THE 17TH ESV

K67 **HOW SON TO BRAKE AND HOW HARD TO BRAKE**
WILSON B
PROCEEDINGS OF THE 17TH ESV

K68 **DISTANCE BEHAVIOUR ON MOTORWAYS WITH REGARD TO ACTIVE SAFTEY**
FILZEK B AND BREUER B
PROCEEDINGS OF THE 17TH ESV
ADAPTIVE CRUISE CONTROL

CATEGORY L **Occupant restraint and injuries**
VEHICLE SAFETY BIBLIOGRAPHY

L01 Chest and abdominal injuries suffered by restrained occupants
Augensten J et al
Advances in Occupant Protection Technologies for the mid-1990s
Comprehensive analysis of US crash data and medical information targeting liver and spleen injuries. HARM analysis. Correlation between use of the sash portion of a seat belt without the lap portion and liver injury. Indicators of potential for liver injury for the information of rescue personnel.
1995

L02 Injury patterns among airbag protected occupants
Augenstein J, Perdeck E, Williamson J, Stratton J
Investigation of 70 cases of seriously and fatally injured motor vehicle occupants who were protected by airbags. Patterns of injury to the heart, lungs and liver have been observed.
Proceedings of the 16th ESV
1998

L03 Reduction of head rotational motions in side impacts - inflatable curtains
Bohman K, Haland Y and Aldman B
"Diffuse head injuries are very common in side impacts”. Investigations have shown that they often originate from contact with the side window and are believed to be caused by quick head rotational motions. A test rig was developed to measure the accelerations on an Hybrid III head during impacts with the side window with and without an inflatable curtain. The curtain has the potential to substantially reduce the risk of diffuse brain injuries (peak angular acceleration was reduced by 60% or more).
Proceedings of the 16th ESV
1998

L04 Effect of seat belts and head restraints on neck injury.
Cameron M
FORS CR 19
1981

L05 Effect of seat belts on minor and severe injuries...
Cameron M
FORS CR 4
1979

L06 Air bag deployments in Canada
Dalmotas D, Hurley J, German A and Diggs K
Proceedings of the 15th ESV
409 crashes involving airbag deployments were studied. Data were also compared with US NASS. Airbags were found to substantially reduce the risk of serious head injury but risk of injury in moderate severity collisions increased particularly for the face and arms. Female drivers are at a higher risk of sustaining injury. "A significant improvement in the overall level of protection afforded by belted occupants by airbags could be achieved by increasing the deployment threshold". The authors suggest that frontal crash tests (regulation and/or NCAP) should include 5th percentile dummies with the seat set in the full forward position.
1996
VEHICLE SAFETY BIBLIOGRAPHY

L07 Aging process and safety enhancement of car occupants
Dejannes M and Ramet M
Proceedings of the 15th ESV 1996
Impact biomechanics in relation to the age
of the occupant. Addresses some of the research issues associated
with protection of aged occupants. Osteoporosis makes bones more
vulnerable to fracture. Rib fractures from belt loading are more
likely over the age of 40. Chest deflection may be an important
parameter in crash tests. Abdominal injuries are more likely for
car occupants aged 70 or more.

L08 The prevention of head and neck injuries in motor vehicle crashes
Digges KH
George Washington University, 1994
Estimated benefits, in terms
of lives and serious injuries saved, are presented for a range
of occupant protection measures. The concept of HARM is
explained (a method of costing by the most severe injury). Based
on NASS data (and remembering that many US vehicle
occupants do not wear seat belts) the distribution of HARM by
body region is: head/neck 37% of severe injuries, and 51% of
HARM. The components of head/neck HARM are: brain 33%, neck 5%,
head 6% and face 7%. Distribution of HARM by crash type is:
frontal 46%, side 34%, roll 16% and rear 3% - it is noted that
70% of HARM is suffered by unrestrained occupants. Several
countermeasures are evaluated for mitigating HARM associated
with head/neck injuries (these data are for restrained occupants
and assume 100% effectiveness): airbags 10%, upper interior
padding 9%, combined airbags and upper interior padding 18%,
glazing 6% and seat design/head restraints 5%. Comments are made
about the effectiveness of each countermeasure and methods of
analysing potential benefits. NHTSA has estimated that
fatalities could be reduced by 3% through the use of upper
interior padding. Ejection resistant glazing also shows
"surprisingly large opportunities for injury abatement among
both restrained and unrestrained occupants".

L09 Patterns of abdominal injury in frontal automotive crashes
Elhagediab A and Rouhana S
Proceedings of the 16th ESV 1998
An anthropomorphic device to assess potential
for abdominal injury is under development. NASS crash data
between 1988 and 1994 is analyzed to identify the frequency and
severity of injury to abdominal organs.

L10 Dummy kinematics in offset frontal crashes
Estep C and Lund A
Proceedings of the 15th ESV 1996
An evaluation of dummy kinematics in offset crash tests conducted
by IIHS. Substantial differences were observed between the crash
tests. Seat belt effectiveness and timing of airbag deployment
were important but seat stability, door integrity and dash and
steering column movement were also factors. In addition to
absorbing the occupants initial kinetic energy the restraint
system must continue to keep the occupant's kinematics under
control during rebound.

L11 Epidemiology of the older driver - some preliminary findings
Evans L and Taheri B
Proceedings of the 16th ESV 1998
The study is intended to address
how the risks older drivers face change as they age. The risks
to other road users are also considered.
L12
Passenger cars and occupant injury

Fildes B, Lane J, Lenard J and Vulcan P
FORS CR 95, 1991

Literature review, third party insurance data analysis and investigation of 227 crashes. Potential countermeasures included: padded steering wheels; belt pretensioners; airbags; ADR10 to include limits on lateral and vertical movement of steering column; elimination of steering wheel; improved belt geometry; webbing clamps; improved seat design; seat belt stalk located to minimise abdominal injury; seat belt interlocks; research on webbing width and stiffness and load limiters; inflatable belts; improved energy absorption by instrument panels; fewer protrusions from instrument panel; improved knee protection; structural improvements to footwell and instrument panel; improved interior padding; improved laminated glass. There were several cases where a bullbar increased the severity of injuries to occupants of other vehicles.

L13
Older road user crashes

Fildes B, Corben B, Kent S, Oxley J, Le T and Rya
MUARC Report 61, 1994

Mass crash data analysis and trends and literature review. Older road users appear to be over-involved in intersection crashes, particularly those with stop or give-way signs. Countermeasures include: improved protection from chest injuries; improved intersection design and improved education about the special problems encountered by older road users. The authors also point out there is a trade-off in crash and injury risk when a person ceases driving and becomes a pedestrian.

L14
Lower limb injuries to passenger car occupants

Fildes B, Lane J, Lenard J, Vulcan P and Wenzel
FORS CR 137, 1994

501 urban crashes were investigated to determine the causes of lower leg injuries. The most frequent causes were contact between: ankle/foot and floor/toepan; lower leg and floor/toepan; knee and instrument panel; knee and steering column. 50% of lower limb fracture injuries occurred in crashes with a delta-V of 50km/h or less. Occupants of smaller cars were more at risk. Countermeasures include: more forgiving instrument panels; knee bars (bolsters); removing injurious fittings; use of less brittle materials in dashboards; innovative pedal designs and structural improvements.

L15
Lower limb injuries to passenger car occupants

Fildes B, Lenard J, Lane J, Vulcan P and Seyer J
J. Accident Analysis and Prevention, 1997

In-depth study of 280 cases where occupants sustained lower leg injuries. More than half the cases were in crashes with a delta V less than 48km/h. Ankle dislocations and foot fractures from the floor and toe pan were the most common type of injury. The study pointed to a need for further regulation and identified several possible countermeasures.
Foot and leg injuries in frontal car collisions

Foressell J, Jakobsson L, Lund A and Tivesten E
Proceedings of the 15th ESV
1996

Accident data, simulations and crash tests are analysed to determine the factors involved in foot and leg injuries. Suggested countermeasures are: Geometry - make footwell as smooth and flat as possible, design lower instrument panel to reduce the chance of legs becoming jammed; Acceleration - avoid having solid objects in front of footwell, shock-absorbing design of footwell, design so feet are close the firewall (limit delta V by reducing forward movement); Pedals - place pedals as close to footwell as possible, design to avoid intrusion of brake booster unit; Intrusion - design to limit intrusion but if intrusion is unavoidable design to avoid folding and deformation that may trap feet.

Upper interior head, face and neck injury experiments

Friedman D
Proceedings of the 16th ESV
1998

Crash analysis and simulations were used to identify factors leading to head, face and neck injuries in rollover crashes. It was concluded that upper interior padding, in combination with modifications to existing components can substantially reduce the risk of injury.

Head restraint measuring device

Gane J and Pedder J
Proceedings of the 15th ESV
1996

Description of a test device used to determine the positional geometry of head restraints and developed by the Insurance Corporation of British Columbia (now used by IIHS and Australian NCAP).

Truck seat belts

Haworth N, Bowland L, Foddy Band Elliot B
Proceedings of the 15th ESV
1996

Interviews and surveys. "Very few drivers of articulated trucks wear seat belts". About 16% of rigid truck drivers wear seat belts "all of the time". Reasons for non-wearing are: uncomfortable, "no safety benefits", "dangerous". Improvements to the ADR have probably improved wearing rates. Further research into the benefits of seat belts in real world truck crashes is suggested. Communications strategies are discussed: improved enforcement, employer lobbying, safety measure (e.g. risk of loss of control if unrestrained).

The design of car safety belts to reduce injuries

Herbert DC
Snowy Mountains Hydro-Electric Authority Engineering
1961

Pioneering work on the use of seat belts to reduce injuries.
VEHICLE SAFETY BIBLIOGRAPHY

L21
Seat belt limitations in collisions with no compromise of passenger compartment
Hill J, Mackay GM and Henderson S
Occupant Protection and Injury Assessment in the Automotive Crash Environ
Main types of injury to drivers in frontal collisions were: head to steering wheel (8%), head to other forward structure 1%, neck without contact (5% AIS2+), torso to steering wheel 3%, leg/pelvis to forward structure 13%, lower leg to footwell 6%. Passengers had similar proportions. “A major challenge, and priority, could be to provide advanced load limiting, selectively for older people, without compromising protection through increased ride-down.”

L22
Development of side impact airbag system for head and thorax protection
Igarashi T, Uchimura T and Ehama M
Proceedings of the 16th ESV
Nissan recently introduced a side airbag system which provides improved protection for the head. The system is mounted in the seat back.

L23
Inertial seatbelt release
James M, Allsop D, Perl T and Struble D
Frontal Impact Protection: Seat Belts and Airbags,
Investigations of real-world crashes and engineering analyses indicate that inertia release is not a safety concern. The loadings are substantially different from those which cause the buckles to open in “parlor tricks”. The lateral acceleration required to cause release even when the seat belt is not under tension is generally well in excess of 100g for several milliseconds. The authors note that humans are significantly softer than dummies therefore buckle decelerations resulting from dummy contact with the buckle are unlikely to be reached with a human occupant.

L24
Injury mechanisms and field accident data in rollover accidents
James M, Allsop D, Nordhagen R and Decker R
Occupant Protection and Injury Assessment in the Automotive
US NASS/CDS data for the period 1988 to 1994 were analysed for rollover crashes. The authors found that no correlation exists between roof crush and occupant injury and there were few serious injuries associated with roof intrusion. In most cases the head is already in close proximity to the roof and “...peak neck compression loads occur prior to any substantial roof deformation.”. They also point out that if head to roof contact (mainly from “vertical” occupant motion) can be eliminated by restraint systems then there could be an increased risk from lateral motion and partial ejection.

L25
Strategies for passenger car designs to improve side impact protection
Kanianthra J, Rains G and Trella T
Strategies for Side Impact Protection,
Modelling side impacts. Injury measures such as the Thoracic Trauma Index. Effect of various countermeasures applied to several vehicle models.
VEHICLE SAFETY BIBLIOGRAPHY

L26 Upper interior head impact protection of occupants in real world crashes
Kanianthra J, Fan W and Rains G 1996
Proceedings of the 15th ESV
NHTSA's research program and rulemaking for interior head protection. The additional cost, to consumers, of providing suitable padding in new vehicles is estimated to be US$33 and the cost per equivalent life saved is US$542. There is a high potential for reducing serious injuries (c.f. McLean, 1996).

L27 Field study on the potential benefit of different side airbag systems
Kompell K, Habert J and Mebner G 1996
Proceedings of the 15th ESV
Investigations of severe side-impact collisions involving BMW cars revealed that 75% involved head injuries. The paper discusses side airbag designs (Inflatable Tubular Structure or ITS) which protect the head in these circumstances. Design issues include: assuming that the side window is shattered so the airbag must bridge the gap, providing a system which is triggered in rollover crashes and which remains inflated for a longer period (7 seconds), provision for a variety of occupant sizes and avoiding aggressive inflation. Methods of testing side airbag systems are discussed.

L28 Whiplash associated disorder - factors in rear-end collisions
Proceedings of the 15th ESV
A study of the relationship between seat belt geometry and neck injuries. The risk of neck injury in females is twice as high as that for males. 64% of the Swedish whiplash injuries are sustained in rear end collisions and is typically less than 20km/h delta V.

L29 Injuries to different body regions in new and old car models
Kullgren A, Krafft M and Tingvell C 1998
Proceedings of the 16th ESV
"The expected number of permanent disabilities for injuries to different body regions are shown for new and old car models based on the injury outcome of real life accidents in Sweden". "For new car models there is a dramatic improvement of the disability risk for some body regions".

L30 The effect of airbags to injuries and accident costs
Langwieder K, Anselm D and Redlich J 1998
Proceedings of the 16th ESV
Results of 500 crashes are presented, with emphasis on the effects of airbags. The combination of lap/sash belt and airbag reduced driver serious/fatal injuries by 40%. Early results on the effects of side airbags are also presented. Problems with unintended firings, rescues, out-of-position occupants, child restraints and intentional deactivation of airbags are discussed. Repair costs are also considered (the authors are from the German Insurance Association). Prospects for reusable airbag components and intelligent airbags are discussed.
L31 Human tolerance to impact - the basis of design for protection

Lowne R 1992

Interior Safety of Passenger Transport,
Mechanisms of injury to femur, knees, abdomen, chest
(compression, deceleration, viscous criterion, "blast" injury),
face, skull and brain. Permanent disability (particularly brain
injury) is not assessed by AIS which is an estimate of
likelihood of survival. Includes performance criteria for
frontal impacts: HIC 1000, neck flexion 190Nm, neck extension
57Nm, chest deflection (compression) 50mm without airbag, 65mm
with airbag, chest deceleration (3ms) 60G, chest viscous
criterion 1m/s, femur compression 9kN peak, 7.6kN over 10ms,
tibia axial compression 8kN, tibia index 1.0 (Moment/225Nm +
Compression/35.9kN).

L32 Guidelines for car seats for improved protection against neck injuries

Lundell B et al 1998

Proceedings of the 16th ESV
"The exact mechanism of (neck) injury has not yet been established".
However, in-depth crash investigations show that a high, fixed
head restraint close to the back of the head is favourable.
Requirements/guidelines should address the performance of the
whole seat, not just the head restraint. Results of tests of new
concepts are presented.

L33 Vehicle design and injuries sustained by female drivers

McFadden M 1998

Proceedings of the 16th ESV
"In 1995 female drivers were 17% more likely to be seriously injured in a
road crash for every kilometre travelled on Australian roads".
Female driving patterns and the characteristics of the cars used
were analysed to identify vehicle characteristics that
contribute to the higher injury rate.
VEHICLE SAFETY BIBLIOGRAPHY

L34 Smart seat belts - some population considerations
Mackay GM 1994

Occupant Containment and Methods of Assessing Protection in the
The anthropometric characteristics of the population may vary considerably from that used in crash tests and regulations:Adult
Height (mm) Sitting Ht (mm) Mass (kg)
1%ile female 1450 720 37
5%ile female 1500 750 41
95%ile male 1850 930 102
99% male 1900 960 107

In addition, observational studies have shown that the actual sitting position can be significantly closer than that of the relevant dummy (5%ile females typically 70mm closer). Obese occupants may have difficulty locating the lap portion of the seat belt across the (load bearing) iliac spines of the pelvis. Studies of crashes involving fatalities to restrained occupants indicate that the characteristics (design) of the restraint system were irrelevant in 80% of the cases, mainly due to massive intrusion. Advanced systems such as airbags could be expected to have only a small effect in those cases. Intelligent restraint systems should allow for: variable biomechanical properties; variation in body weights; different sitting positions and different crash severities. Head position relative to the steering wheel is probably the most critical parameter, particularly with smart airbags. Other design measures include: variable seat belt pretensioning; variable seat belt load-limiting; discretionary web clamps and, for airbags, variable firing threshold, inflation rates and gas volumes. Studies of side impacts indicate that 90% of lateral collisions involving AIS 3 injuries or more could be successfully detected by a sensor located in the lower quadrant of the door. Consideration should be given to seat belt pretensioning in the event of a rollover crash, although prevention of head impacts with the upper interior is unlikely. See also Mackay GM (1995) ‘Smart seat belts - what they offer’, Automotive Passenger Safety, IMechE, London, November 1995.

L35 An historical perspective on impact biomechanics
Mackay GM unda

(book source unknown - copy held by Staysafe)
Describes pioneering research on impact biomechanics and physics of crashes. It is noted that Dr John Lane from Melbourne coined the term crashworthiness in association with aircraft safety in the 1940s.

L36 The role of the upper car interior in car occupant brain injury
McLean AJ, Kloeden C and Farmer M 1996
Proceedings of the 15th ESV
137 accidents were investigated. There was a low number of cases where the known head impact was with a part of the car that could be padded and therefore the effects of introducing padding were difficult to determine. Subject to this precaution, it was predicted that padding would have changed the outcome in 39% of the cases of minor brain injuries, 61% of the cases of moderate brain injuries and 7% of severe brain injuries. “there is considerable potential for reducing the severity and consequences of brain injuries by padding the upper interior of the passenger compartment.”
L37 Head and neck injuries in passenger cars: a review of the literature
McLean A et al 1987
The review was undertaken to assess the potential for the reduction of the frequency and severity of head injuries in Australia. Amongst other devices, seat belt clamps and pre-tensioners were considered. It was estimated that "the increase in cost of these devices, compared to a standard inertia-reel belt system" was 1.5 times for webbing clamp and 2 times for pre-tensioners (the basis of this cost estimate is not clear from the paper). A comparison of "passive" and "active" seat belt systems is also discussed but this was based on a USA study and therefore it was not directly applicable to Australia. Air bags systems are discussed but costs and effectiveness (in terms of injury reduction) are not covered.

L38 Protective headgear for car occupants
McLean AJ and Kloeden C 1998
Proceedings of the 16th ESV
The likely benefits of the use of protective headgear by car occupants are evaluated. The benefits from using a soft-shell pedal cycle helmet are shown to be much greater than that previously estimated for padding the interior of the car. An energy absorbing headband which protected the forehead and sides of the head would have influenced 44% of the cases studied and this type of device is proposed as a first step to encouraging the use of protective headgear by car occupants.

L39 New requirements and solutions on head impact protection
Menking M 1998
Proceedings of the 16th ESV
Describes how Porsche are developing occupant protection systems to cater for NHTSA's new interior head strike requirements (FMVSS 201 Part 571). Computer simulations are used to help optimise the systems while minimising the additional space necessary for energy absorbing materials.

L40 Brain injury risk assessment of frontal crash test results
Mertz H and Irwin A 1994
Background on the derivation of HIC. A case is made for evaluating HIC over 15ms rather than 36ms (as in FMVSS 208). The authors were particularly concerned about the prolonged moderate decelerations produced by airbags - the HIC36 can be quite high but the risk of injury is claimed to be low.

L41 Fitting and wearing of seat belts in Australia.
Milne P 1985
FORS OR 2 April 1985.
Documents the history of seat belt initiatives in Australia and reviews literature on the effectiveness of wearing seat belts. One Victorian study estimated that urban drivers wearing seat belts were 30% less likely to be killed or injured than unrestrained drivers. For rural crashes the comparable figure was 22%. A brief analysis of the impact of seat belt legislation is also given.
VEHICLE SAFETY BIBLIOGRAPHY

L42 A study of soft tissue neck injuries in the UK
Morris A and Thomas P
Proceedings of the 15th ESV
1996

A retrospective study of UK crashes found a the overall soft tissue neck injury ("whiplash") rate was 16%. Over 50% of these occurred in frontal crashes and 25% in side impacts. The study found no evidence of benefit from head restraints in rear crashes. The authors note that poor adjustment of head restraints might have contributed to this result. However, females who are probably in a "better" situation in terms of head restraint position sustained a higher rate of neck injury. The concept of yielding seats should be explored further. Some self-reported claims of injury could be fraudulent.

L43 Feasibility of Occupant Protection Countermeasures
MUARC
FORS CR 100, June 1992

Comprehensive review of a range of occupant protection countermeasures. Estimates of costs and benefits, using Harm analysis. Priority should be given to reducing vertical and lateral steering column intrusions and footwell intrusions. Key benefit/cost results were:

<table>
<thead>
<tr>
<th>Countermeasure</th>
<th>Benefit/Cost</th>
<th>% Trauma Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Improved belt geometry & seat design</td>
<td>7.3</td>
<td>1.7%</td>
</tr>
<tr>
<td>2. Energy-absorbing steering wheel</td>
<td>3.2-16</td>
<td>1.9%</td>
</tr>
<tr>
<td>3. Seat belt warning device</td>
<td>4.1-7.2</td>
<td>3.4%</td>
</tr>
<tr>
<td>4. Knee Bolsters</td>
<td>2.9-4.3</td>
<td>5.3%</td>
</tr>
<tr>
<td>5. Improved lower instrument panels</td>
<td>1.8-18</td>
<td>2.6%</td>
</tr>
<tr>
<td>6. Fullsize drivers airbag (elct/mech)</td>
<td>1.2</td>
<td>14.9%</td>
</tr>
<tr>
<td>7. Webbing clamps</td>
<td>1.1-3.5</td>
<td>1.2%</td>
</tr>
<tr>
<td>8. Seat pretensioner</td>
<td>0.8-1.1</td>
<td>2.7%</td>
</tr>
<tr>
<td>9. Shoulder pretensioner</td>
<td>0.46</td>
<td>1.6%</td>
</tr>
<tr>
<td>10. Padded upper interior (see McLean 1996)</td>
<td>0.3-0.4</td>
<td>0.7%</td>
</tr>
<tr>
<td>11. Passenger airbag</td>
<td>0.18</td>
<td>2.4%</td>
</tr>
<tr>
<td>Package of 1,2,4,6,7,8 (drivers airbag)</td>
<td>1.4-1.6</td>
<td>25%</td>
</tr>
<tr>
<td>Package of 1,2,3,4,7,8 (no airbag)</td>
<td>2.1-3.4</td>
<td>17%</td>
</tr>
</tbody>
</table>

L44 New restraint technologies for vehicle safety
Nordin S and Herrmann B
Proceedings of the Developments in Safer Motor Vehicles Seminar
1998

Autoliv's occupant restraint research program. Effects of belt pretensioners, load limiters, "gentle" airbags, "smart" airbags, radially deploying airbags.
Estimated effectiveness of airbags and seat belts in reducing the likelihood of moderate and greater injury to vehicle occupants. Key findings were: Airbags provide fatality reducing protection. In car frontal crashes (between 10 and 2 o'clock) the risk of a fatality is reduced by 19%. The risk is reduced by 11% in all crashes (estimated 1198 lives saved between 1987 and 1995). The effectiveness is similar in light trucks. For front passengers 13 and over the fatality-reducing effectiveness of a passenger airbag is 27% in purely frontal crashes (compared with 31% for a drivers airbag in these crashes). Limited data indicates that children under 13 are at a higher risk of a fatality with a passenger airbag (but investigations revealed that out of 31 cases 11 involved rear-facing child seats and 19 involved unrestrained children: only 1 case was wearing a seat belt). Lap/sash seat belts reduce the risk of an AIS2+ injury in all crashes by 49%. With the addition of a drivers airbag the effectiveness is 60%. There is an increased risk of arm injury with airbags but airbags reduce the likelihood of injury to head, neck, face, chest and abdomen and these are more likely to be life-threatening.

A series of crash tests at 60km/h into deformable barrier, 40% offset overlap. Neon, Camry and Taurus tested. 5th percentile dummy also used.

Discussion paper issued by NSW RTA. Covers exemptions for taxi drivers and heavy vehicle drivers ("compelling evidence to support the removal of the exemption").

Several cases where the retractor mechanism locked during the initial impact and then released a subsequent rollover are detailed. The author recommends that a delay mechanism (at least 10 seconds) be incorporated in the retractor design to prevent inadvertent release during a rollover crash.

Proceedings of the 16th ESV

Proceedings of the 16th ESV
VEHICLE SAFETY BIBLIOGRAPHY

L50 The medical consequences of car crashes
Siegel J and Dsichinger P 1992
Study of injuries suffered by 145 patients receiving severe injuries (ISS 16+) in crashes. A large proportion required extrication from the vehicle (mainly due to the injuries suffered). Most injuries resulted from contact with intruded structure. Brain injuries in lateral crashes were significantly associated with head contacts with side windows and a-pillars. Injuries to the lower extremities and pelvis were found to be especially costly due to orthopedic, plastic surgical and critical care services and also prolonged the length of stay, complicating recovery from other injuries. Countermeasures include: improved structural integrity of passenger compartment and side airbags designed to protect the head.

L51 Head and neck injury in side impacts
Sparke L 1996
Proceedings of the 15th ESV
"There has been a dramatic increase in brain injury in the last decade, not as a result of increased accidents, but because of increased survival". Optimisation of restraint systems in side impacts is expected to be a more difficult process than that for frontal impacts. The author cautions that evaluation of performance by a single measure, such as a regulatory crash test will not necessarily maximise community benefits - an injury cost model is more appropriate.

L52 The optimisation of an airbag and seat belt system
Proceedings of the Developments in Safer Motor Vehicles Seminar, Computer modelling of occupant restraint systems. Validation of the modelling through experimental investigations. Societal harm approach to evaluating occupant restraint systems. A 33% reduction in overall injury risk can be obtained through optimisation of the seat belt and airbag systems. The simple installation of an airbag into an existing (non-airbag) restraint system cannot guarantee the best protection for occupants in a frontal collision.

L53 The risk of skull/brain injuries in modern cars
Proceedings of the 16th ESV
The influence of car design, including airbags, is discussed, based on real world crashes. A risk function for skull/brain injuries based on change in velocity is presented.
VEHICLE SAFETY BIBLIOGRAPHY

L54 Optimizing seat belt usage by interlock systems

Turbell T et al 1996

Measures to improve seat belt wearing rates are discussed. Problems with the (failed) US attempt in 1973 to introduce seat belt interlocks are discussed (infringement on personal freedom, existing seat belts were uncomfortable and difficult to use, the interlock did not allow low speed driving or engine idling). Various solutions are discussed: the engine interlock (not favoured), external visual signals (lights illuminated or flash when the seat belt is not used), more "aggressive" internal warning lights/alarms, disabling air conditioner or radio, throttle pedal feedback, maximum gear level and maximum speed. At staged approach such as audible warning followed by speed limiting may be the best approach. It is pointed out that the last 10% of seat-belt non-wearers probably represents the most accident prone group and therefore the benefits of addressing this group are greater than normally expected. It is estimated that seat-belts would have saved 50% of the fatalities involving unrestrained occupants.

L55 Evaluation of advanced side airbags for head protection

Lateral collisions comprise about one third of all automobile crashes. A majority of fatalities are due to injuries to the head and neck. Head/thorax side airbags and inflatable curtains are evaluated, using computer modelling and experiments.

L56 Significance of intersection crashes for older drivers

Viano D and Ridella S 1996

Technologies for occupant protection assessment

Older drivers are more likely to be involved in intersection collisions - a time of complex information processing and decision making.

L57 Optimisation of an intelligent total restraint system

Voorhies K and Narwani G 1996

The system is designed to take into account occupant position, weight and size, crash severity and seat belt usage in order to optimise the protection for that occupant. Two-stage airbag inflators, controllable airbag vents and controllable seat belt load-limiters, pre-tensioners and upper-anchorage mounts are included in the system.

L58 Glazing effects of door or frame deformations in crashes, Part 2

Yudenfriend H and Clark C 1997

Analysis of the uniformity of tempered glazing used in automotive side windows. Experimental evaluations of th effects of non-uniformity. The authors refer NHTSA conclusion that 1300 lives could be saved per year through improv glazing. The window may shatter from strain induced by impact at other locations and presents a hazard to occupants from fast-moving shattered glass. Once the window shatters occupant ejection is more likely. It is claim that BMW, Audi, Volvo, Toyota, Nissan and Honda are about to introduce laminated glazing on the side windows of some of their models. The are benefits of noise reduction and improve theft resistance v laminated glass.
VEHICLE SAFETY BIBLIOGRAPHY

L59 The reduction of the risk of lower leg injuries in offset crash tests
Zeilder F, Scheunert D, Breitner R and Krajewski
Proceedings of the 15th ESV 1996
Mechanisms of lower leg injuries are discussed. "Impact shock syndrome" is presented as frequent injury caused by a small intrusion but very high intrusion velocity [this has implications for assessment lower leg injury risk by intrusion alone]. Another source of injury is the secondary impact of the foot against the footwell or pedal.

L60 Optimized restraint systems for rear seat passengers
Zellmer H, Luehrs S and Brueggemann K
Proceedings of the 16th ESV 1998
The standard lap/sash seat belt in rear seats can produce excessive neck moments. The authors note that airbags do not seem to be practical for rear seating positions. They investigated the benefits of seat belt pretensioners and load limiters. The resulting optimized restraint system produced acceptable dummy measurements even at crash pulses of 40g or more.

L61 Head injury risk assessment and prevention in automobile accidents
Ziernicki R, Jacobson O and Hamernick J
29th International Symposium on Automotive Technology and Automation, 1996
Methods of testing for head injury potential. Relationship between HIC, deceleration, impact speed and the probability of head and brain injury. A North Carolina survey of 215 drivers who experienced an airbag deployment during 1991 found: 76% consider the airbag protected them from injury "a lot", 13% "somewhat" or "a little"; 2% considered that it increased their injury; 96% said they would want an airbag in their next car and 2% said they wouldn't.

L62 Lower extremity loads in offset frontal crashes
Zuby D and Farmer C
Proceedings of the 15th ESV 1996
Results of 17 offset crash tests by IIHS are evaluated to determine the effects of intrusion on lower leg injuries. "Lower extremity loads measured by crash dummies in crash tests are strongly influenced by the magnitude of intrusion in the occupant compartment".
L63 Unexpected deaths in airbag equipped cars: case reports
Zuppichini F, Trenchi G, Rigo C and Marigo M
Advances in Occupant Restraint Technologies
Analysis of three fatalities involving airbags but no significant intrusion. The two drivers and one passenger were unrestrained and all appear to have been close to the airbag at the time of inflation. Possible injury mechanisms related to airbags are: direct loading of the inflating airbag; interposition of arms or objects between airbag and head; contact with steering wheel through airbag; secondary thoracic perforations by broken ribs; inertial loading of organs; pressure waves (hypothetical); burning form hot gases; chemical injury to hands or eyes. Causes of out-of-position movements are: short stature; unusual driving posture (“advanced driving”?); pre-impact braking; initial impact below airbag threshold; occupant leaning forward (eg adjusting radio volume); hands across steering wheel (“claxon reflex”) or in front of face; stretching arms, legs or back. In the associated discussion Murray McKay points out that, unlike medical research for new drugs, systematic evaluation of vehicle safety initiatives in actual crashes is relatively under researched and that field studies are not an integral part of the process of design and development or rulemaking. In the case of airbag injuries it is important that occupant characteristics are recorded. More research is also needed into occupant seating positions.

L64 Neck and spinal injuries: injury outcome and crash characteristics in Aust.
Fildes B and Vulcan P
Proceedings of The Biomechanics of Neck Injury Seminar
Incidence of neck and spinal injuries in passenger car crashes in Australia. Outcome of injuries in terms of treatment, rehabilitation and costs. Sources of neck and spinal injuries. Whiplash injuries. Insurance claims, mass crash data and in-depth studies were analysed. Countermeasures include roof and header rail padding (taking care not to increase the risk of the head "socketing" in the padding); front and side airbags; better designs of head restraints (subject to further research); helmets for car occupants; improved rear crumple zones; prevention of rollover crashes and prevention of head ejection.

L65 What happens to the cervical spinal cord during neck injury?
Bilston L
Proceedings of The Biomechanics of Neck Injury Seminar
Biomechanical description of neck injury. Development of a physical model to better understand the injury mechanisms (computer modelling was found to be too difficult at the time).

L66 An overview of ergonomic issues in neck injury amelioration
Svensson N
Proceedings of The Biomechanics of Neck Injury Seminar
Incidence of neck injuries. Misuse of head restraints (observational survey of 2004 motorists showed widespread misuse). Countermeasures include improved rear end collision energy absorption; improved seat design and improved head restraint design. Factors such as seat back stiffness were investigated through computer modelling.

L67 The measurement of neck injury risk
Sparke L
Proceedings of The Biomechanics of Neck Injury Seminar
Limitations of current test dummies in the determination of the risk of neck injury. Relationship between dummy measurements (moments and forces) and injury risk. The injury threshold for a 5th% female is about half of that for a 50th% male. Computer simulations can help to optimise restraint systems to reduce the risk of neck injury. "Neck injury resulting from car crashes is potentially a more serious problem than is currently recognised in Australia".
VEHICLE SAFETY BIBLIOGRAPHY

L68 Neck injury severity and vehicle design
 McLean AJ 1995
 Proceedings of The Biomechanics of Neck Injury Seminar
 Report on research conducted in the USA during the 1970s. The study showed that there are large differences between males and females in neck injury susceptibility in rear end collisions. There are also large differences associated with age.

L69 Neck injury in children
 Brown J 1995
 Proceedings of The Biomechanics of Neck Injury Seminar
 Research to quantify the effects of child restraint design and adjustment on neck loads produced in child dummies. Accident investigations suggest that the incidence of neck injury from vehicle accidents is quite low in children. No cases of serious neck injury have been reported in correctly restrained children in Australia where the child sits have a 6-point harnesses and a top tether. Preliminary results suggest that a child's neck might be more vulnerable to axial loads [than flexion]

L70 An overview of manual lap belts in the centre rear
 Brown J 1995
 Proceedings of The Lap Belt Safety Conference
 Deficiencies of lap belts, compared to lap/sash belts. Injuries patterns. Pointed out that the strength requirements for child restraint anchorages provided in centre rear seats since 1977 are similar to those of an upper anchorage for a lap/sash seat belt therefore arguments that the car structure is unsuitable are unfounded.

L71 Spinal cord injury associated with lap only seat belt usage
 Middleton J 1995
 Proceedings of The Lap Belt Safety Conference
 NSW has about 50 new cases of spinal cord injury resulting from vehicle accidents each year. The lap belt contributes to a localisation of forces in a region of the spinal cord that is vulnerable to injury through hyperflexion. Abdominal injuries may be difficult to diagnose due to the consequent neurological deficit [paralysis]. Case studies show the severe injuries that may result from lap only seat belts.

L72 A study of seat belt syndrome in the centre rear seating position
 Lane J 1995
 Proceedings of The Lap Belt Safety Conference
 "The weight of evidence is that lap belts provide substantial protection to car occupants, through less than 3-point lap/sahs seat belts". A specific injury - the seat belt syndrome - is associated with lap belts. Roadside observations were compared with insurance claims to calculate relative risk. The centre rear lap belt wearer has about twice the risk of a person wearing a lap/sash seat belt in an outboard rear seat and about five time the risk of a front passenger wearing a lap/sash seat belt. [this suggests deficiencies in rear seat design and rear seat restraint design]

L73 Retrofitting of lap sah seat belts in centre rear seating positions
 Judd R 1995
 Proceedings of The Lap Belt Safety Conference
 Restraint system manufacturer discusses the difficulties and solutions to retrofitting lap sah seat belts to centre rear seating positions. Vehicles with rear parcel shelves provide the simplest solution.

L74 Effectiveness of ADR69
 Morris A, Barnes J, Fildes B, Bentivegna and Se 2001
 ATSB CR 199
 Case controlled study of crashes with and without airbag deployments. Puzzling that deltaV with airbags less than those without. HAI per driver 60% more with no airbag. Passenger airbag effectiveness inconclusive.
VEHICLE SAFETY BIBLIOGRAPHY

L75 Benefits of the inflatable tubular structure
Kompass K, Digges K and Malliaris A
Proceedings of 16th ESV 1998
4.6% of the 4 million injuries sustained by car occupants in the US could be influenced by a head protecting tube or curtain. Severe injuries (AIS3+) are reduced by 49%. Minor injuries (AIS2) are reduced by 27%.

L77 Ford focuses on safety
Mateja J

L78 VEHICLE OCCUPANT SURVEY 1994
RTA NSW 1994
RTA UNPUBLISHED DATA
SEATING POSITION
DRV 66%, MID-FRONT 0.3%, NS FRONT 21.8%,
OS REAR 4.3%, MID REAR 2.3%, NS REAR 4.9%,
THIRD ROW 0.2%
VEHICLE TYPE: CAR 83%, TAXI 2.6%, VAN 14.3%
NUMBER OF OCCUPANTS: 1-66%, 2-24%, 3-7%, 4-2%

L79 EFFECTIVENESS OF AIRBAGS IN AUSTRALIA
BARNES J 2001
ROAD SAFETY 2001, MUARC, MELBOURNE

L80 SAFETY BENEFITS RESULTING FROM VEHICLE DESIGN CHANGES SINCE THE INTRO OF A.
HENDRIE D 2001
ROAD SAFETY 2001, MUARC, MELBOURNE

L81 NARROW OBJECT CRASHES AND INJURY OUTCOMES
MORRIS A 2001
ROAD SAFETY 2001, MUARC, MELBOURNE

L82 TIMBER POLE CRASHES
GRZEBIETA R 2001
ROAD SAFETY 2001, MUARC, MELBOURNE

L83 EFFECT OF OCCUPANT CHARACTERISTICS IN INJURY RISK - ACTIVE RESTRAINTS
MCCARTHY 2001
PROCEEDINGS OF THE 17TH ESV

L84 PRELIMINARY EVALUATION OF PASSENGER AIRBAG EFFECTIVENESS IN AUSTRALIA
MORRIS A, BARNE J AND FILDES B 2001
PROCEEDINGS OF THE 17TH ESV
INCONCLUSIVE

L85 FACTORS INFLUENCING LOWER EXTREMITY INJURIES
HESSE S 2001
PROCEEDINGS OF THE 17TH ESV
FOOTWELL AND PEDAL INTRUSION MAIN FACTORS. AIRBAG AND BOLSTER HELP IN MORE SEVERE CRASHES.
VEHICLE SAFETY BIBLIOGRAPHY

L86 **EFFECTIVENESS OF (DRIVER) AIRBAGS IN AUSTRALIA**
MORRIS A, BARNES J AND FILDES B
PROCEEDINGS OF THE 17TH ESV
HARM 60% GREATER WITHOUT AIRBAGS
2001

L87 **SIDE AIRBAGS: BENEFITS AND RISKS FOR CHILDREN**
TYLKO S
PROCEEDINGS OF THE 17TH ESV
SOME PROTECTION. NO HAZARDS IF CORRECTLY SEATED.
2001

L88 **CRASH AND FIELD PERFORMANCE OF SIDE AIRBAGS**
DIAMOTAS D
PROCEEDINGS OF THE 17TH ESV
CURTAINS ALOS EFFECTIVE FOR SUV INTO CAR SIDE IMPACTS.
2001

L89 **COMPARISON OF EURONCAP ASSESSMENTS WITH INJURY CAUSATION IN ACCIDENTS**
FAILS A AND MINTON R
PROCEEDINGS OF THE 17TH ESV
GOOD AGGREEMENT. HEAD EJECTION IN SIDE IMPACT NEEDS MORE WORK.
2001

L90 **STEERING COLUMN MOVEMENT IN SEVERE FRONTAL CRASHES - EFFECT ON AIRBAG**
ZUBY D AND O'Neill B
PROCEEDINGS OF THE 17TH ESV
REGULATIONS THAT LIMIT STR COL MOVEMENT IN OFFSET TEST DESIRABLE
2001

L91 **LOWER EXTREMITY INJURIES AND ASSOCIATED INJURY CRITERIA**
KUPPA
PROCEEDINGS OF THE 17TH ESV
INJURY RISK FUNCTIONS. FUNCTIONAL LOSS ISSUES
2001

CATEGORY
M **Child restraints**

M01 Risk of death among child passengers in front and rear seating positions
Braver E, Whitfield R and Ferguson S
Proceedings of the 2nd Child Occupant Protection Symposium,
Data from the US FARS are analysed to determine impact severity, direction of impact and other factors. "Children are at significantly lower risk of dying in rear seats of passenger vehicles whether or not these vehicles are equipped with a [front] passenger airbag... Children were at a lower risk in rear centre than rear outboard positions".
1997

M02 A comparison of anchorage systems for child restraints in side impacts
Brown J, Kelly P and Griffiths M
Proceedings of the 2nd Child Occupant Protection Symposium
Three child restraint sytems were subjected to side impact tests. The systems were CAUSFIX (two rigid lower anchorages and top tether), UCRA (flexible lower anchorages with and without top tether) and "conventional" Australian (adult belt and top tether). The CAUSFIX system performed best. The UCRA system performed well with top tether but poorly without the top tether. The authors point out that it is important to analyse the kinematics of the dummy in addition to measuring head excursion and deceleration because the head may come close to potentially injurious surfaces without showing up in the measurements. Concern is expressed that spacing the lower anchorage in the ISOFIX system would not allow the installation of three child restraints in the rear of most vehicles.
1997
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>M03</td>
<td>Universal anchorage systems for child restraint devices</td>
<td>Brown J and Kelly P</td>
<td>1998</td>
<td>Review of the progress in the development of an international standard for child restraints. Compares rigid (ISOFIX) and conventional child restraint anchorage systems. The latest consensus involves two rigid lower anchorages and provision for an optional top tether. This will provide a significant countermeasure to misuse (a problem when adult seat belts are used for restraining the device) and it will improve side impact protection. The authors are concerned that the spacing of the ISOFIX anchorage will preclude the installation of three child restraints across the rear seat.</td>
</tr>
<tr>
<td>M04</td>
<td>Passive security for wheel-chair users travelling in motor vehicles</td>
<td>Cordes J, Burger H and Schrimpf H</td>
<td>1998</td>
<td>Requirements for wheelchair restraint systems are markedly less than those applying to passenger car restraint systems. Possible safety improvements are discussed. An "impact cushion" which is secured by a lap belt is evaluated. Force limiting devices on the wheelchair restraint system also increase safety for the occupant.</td>
</tr>
<tr>
<td>M05</td>
<td>Use and misuse of child restraint devices in Michigan</td>
<td>Eby D and Kostyniuk L</td>
<td>1998</td>
<td>A statewide direct observation study of child restraint use and misuse, including random-sample driver interviews at day care centres. 75% of children under 4 years of age used child restraints, but this reduced to 51% if the driver was unbelted. 87 driver interviews were conducted. 97% believed that the child restraint was correctly installed and used. 71% learned how to install the device by reading the manufacturers instructions but none used this information in learning how to secure the child in the restraint because it was "obvious". The overall misuse rate was 89% (vehicle containing at least one incorrectly installed or incorrectly used restraint). Errors in placing the child in the seat were more common than installing the restraint in the vehicle. Most common problems were slack in the adjustment for the child or attachment of the restraint to the vehicle.</td>
</tr>
<tr>
<td>M06</td>
<td>Child restraint device use and misuse in Michigan</td>
<td>Eby D, Kostyniuk L and Christoff C</td>
<td>1997</td>
<td>Detailed report on the project summarised in the ESV paper. See also UMTRI Research Review April-June 1997, Vol 28, No</td>
</tr>
<tr>
<td>M07</td>
<td>Optimisation of the wheelchair tiedown and occupant restraint system</td>
<td>Gu J and Roy P</td>
<td>1996</td>
<td>Tests of restraint systems built to proposed ISO standards. It was concluded that b-pillar mounted restraints offer superior protection to floor-mounted restraints.</td>
</tr>
</tbody>
</table>
VEHICLE SAFETY BIBLIOGRAPHY

M08 Children in car crashes

Henderson M 1994

Child Accident Prevention Foundation of Australia (CAPFA now Kidsafe).
An in-depth study of car crashes in which child occupants were injured. The study covered 247 children in 131 vehicles. Intrusion, collapsing seats, broken glass and loose objects were found to be the most likely causes of injury to properly restrained children. For infant capsules the advantages of the move from body bands to harnesses was confirmed. Properly used forward-facing child seats provided exceptionally good protection and no significant neck injury, even in severe crashes. The one child seat fatality was a case of gross misuse. Performance of booster seats was found to be good, except where mis-used with a lap belt only (the only booster seat fatality). Adult lap/sash seat belts were found to provide good protection for children, even in high speed crashes and neck injury was not found to be a problem. The problem of the lack of a lap/sash seat belt in the centre-rear seat of most vehicles was noted - lap only seat belts were found to be an incomplete restraint with significantly greater incidence of abdominal injuries. Four-wheel-drives and passenger vans comprised a high proportion of the vehicles in the study.

M09 Adult seat belts: how safe are they for children?

Proceedings of the 15th ESV

The CAPFA study (see above) recorded 121 cases of children wearing lap-sash seat belts and 35 cases of children waering lap only seat belts. Sled tests were conducted to simulate some of the crashes. "To obtain maximum protection, children should be restrained in dedicated child seat, or adult seat belts with booster seats, until they are of a size appropriate to use adults belts. However, field data... show that (children) were generally well protected (by adult lap/shoulder seat belts) even in severe frontal crashes and none sustained belt-induced inertial neck injury...Lap-belted children sustained a higher proportion of abdominal injuries and a similar proportion of head injuries despite almost all being seated in the centre position...". "...adult lap/shoulder belts do not present a significant risk of severe injury to young children".

M10 Injuries to restrained children

Proceedings of the 38th Annual AAAM.

Analysis of the cases from the CAPFA Study where there was injury to children in child restraints or booster seats. When properly fitted and adjusted these devices worked exceptional well, even in crashes regarded as "unsurvivable" for adult occupants. The principal threats are from impact intrusion, collapsing seats, broken glass and loose objects.
Children in adult seat belts and child harnesses: crash sled comparisons

Henderson M, Brown J and Griffiths M

Proceedings of the 2nd Child Occupant Protection Symposium, 1997

Three types of restraint system were evaluated: adult lap/sash, lap only and lap belt with child harness. Three child dummies (18 months, 3 years and 6 years) were used. The results of an in-depth field study indicated that, while a dedicated child seat offered the best protection, adult lap/sash belts provide acceptable protection, even in severe crashes. The sled test results confirmed this observation: the lap/sash belt minimised head excursion and risk of head and abdominal injury and there was nothing in the results to suggest that the lap/sash system increases the risk of neck injury compared to the lap only seat belt. The addition of a harness to a lap seat belt reduces head excursion but increases neck forces and head accelerations, compared with a lap/sash seat belt. Also, the harness tends to pull the lap belt upwards, increasing the risk of submarining. The 18 month dummy was not well restrained by either the lap/sash or lap only seat belts - this emphasises the importance of using child seats up to at least two years of age.

Injury risks, misuse rates and the effects depending child restraint system

Hummel Th, Lanwieder K, Finkbeiner F and Hell

Proceedings of the 2nd Child Occupant Protection Symposium, 1997

Real world accident data covering 593 restrained children in car crashes was analysed. It was found that the frequency of injury and risk of severe injury were significantly higher when the children were restrained solely by an adult seat belt. "Misuse" was observed in 63% of the cases where installation of child restraints was observed and serious misuse was observed in one third of all cases. Sled tests confirmed that misuse can substantially reduce the protection provided by the restraint. The ISOFIX system displayed a decisive improvement in the number of mistakes made during installation. "ISOFIX" appears to be a central element in the improvement of future child restraint systems.

Trends and effects of child restraint systems based on Volvo’s Database

Isaksson-Hellman I, Jakobsson L, Gustafsson C

Proceedings of the 2nd Child Occupant Protection Symposium, 1997

Rearward facing child restraints were found to be especially effective, with a calculated injury reducing effect of 96% (compared with no restraint?). The findings for other systems were 77% for booster seats with adult belts and 59% for adult seat belts alone. Forward-facing child seats were not evaluated (uncommon in Sweden?).
VEHICLE SAFETY BIBLIOGRAPHY

M15 Crash tests with forward facing child restraints & passenger airbags
Krafft M, Kullgren A, Malm S and Ydenius A
Proceedings of the 16th ESV
Crash tests show there is a large injury risk for forward facing systems in front of a passenger airbag in a collision with pre-impact braking (note the child restraints are unlikely to have had top tethers and therefore the adult interia reel seat belt might have allowed excessive forward movement of the child restraint).

M16 Side impact to children in cars - accident analysis and safety tests
Langwieder K, Hell W, Lowne R and Huijskens C
Proceedings of the 15th ESV
Comprehensive report of research into side impacts involving child restraints. Severe and fatal injuries were found to be overrepresented in lateral collisions. Head contact against the child restraint or inner door structure was important. A sled test needs to simulate a 50km/h side impact and must reproduce door intrusion. Forward movement of the head in pre-impact braking may contribute to injuries in the case of

M17 Towards improved infant restraint system requirements
Legault F, Stewart D and Dance M
Proceedings of the 16th ESV
Crash data files and crash tests were conducted to compare the protection provided by different devices at various ages. "Infants and young toddlers are provided with a higher level of safety when restrained by in a rear-facing infant restraint system as long as possible rather than not being restrained, being restrained in a forward facing restraint or restrained by a seat belt".

M18 A comparison of the performance of child restraint attachment systems
Lowne R, Roy P and Paton I
Proceedings of the 2nd Child Occupant Protection Symposium
Five types of child restraint systems were subjected to user trials and dynamic tests. The systems were: A-rigid four point ISOFIX, B-rigid two points with top tether, B'-rigid two points with a device that pushes the restraint against the seat back (pre-tensioning), C-flexible lower attachments and top tether (similar to Australian system) and a "conventional" British installation using only the adult seat belt. The conventional system was more likely to be incorrectly fitted than the other systems and performed worst overall in the front impact dynamic tests. Scheme A provided the least head excursion (desirable), followed by B, C and B'. B' was little different to the conventional system. The systems with rigid attachments performed much better in the side impacts. Scheme C (flexible lower attachments) produced greater head displacement and chest deceleration than the conventional system. Schemes B' and C were particularly sensitive to slack in the top tether. With more than 25mm slack in the top tether Scheme C deteriorated to greater head displacement than the conventional system in both the front and side impacts. The importance of eliminating slack in the top tether is emphasised.
VEHICLE SAFETY BIBLIOGRAPHY

M19 Child restraint tether straps - increasing safety for children
Lumley M
Proceedings of the 2nd Child Occupant Protection Symposium
Four child restraint systems were tested according to FMVSS213 to assess the effect of the top tether and slack in the top tether. It was concluded that the addition of a top tether provided a substantial reduction in head excursion in child restraints which normally comply with FMVSS213 and HIC tends to be lower. A top tether can reduce the disadvantages of not tightening the adult seat belt correctly. Retro-fitting of top tethers to child restraints in the USA is recommended. It is also noted that the FMVSS test requirements that the adult seat belt be tightened to 60N is unrealistic - finger tight (20N) would be more appropriate.

M20 Australian child restraints lead the world
Lumley M
Proceedings of the Developments in Safer Motor Vehicles Seminar,

M21 The frontal impact performance of ISOFIX child restraint systems
Paton I, Roy P and Roberts A
Proceedings of the 15th ESV
A series of sled impact tests were conducted to assess the performance of ISOFIX and CANFIX (with top tether) child restraints. The CANFIX system, complete with properly adjusted top tether, provided a level of performance similar to the ISOFIX system when tested to ECE R44 02 in a frontal impact. The authors point out the importance of top tether use and adjustment.

M22 Development of a sled side impact test for child restraint systems
Paton I and Roy P
Proceedings of the 16th ESV
The Australian/NZ standards test does not include the effects of intrusion. The authors conducted a (TRL) research program in a (partially successful) attempt to reproduce intrusion effects.

M23 Usability trials of alternative child restraint attachment systems
Pedder J, Gane J, Pasco D, Deibert M and Lumley
Proceedings of the 2nd Child Occupant Protection Symposium
Five systems were evaluated in user trials: The "conventional" Australian system using adult seat belts and a top tether, ISOFIX with four "rigid" attachment points, CAUSFIX with two "rigid" lower attachment points and a top tether, UCRA with two lower webbing attachments and a top tether and a development of the UCRA system. The conventional system was found to be most likely to be misused and the "rigid" systems were found to be best overall. CAUSFIX and UCRA were the systems preferred by most participants but the ISOFIX attachments were used without difficulty (contrary to concerns of some vehicle manufacturers). Simple pictograms were found to be adequate for informing users about the installation of each type of restraint system.
VEHICLE SAFETY BIBLIOGRAPHY

M24 Effect of harness mounting location on child restraint performance
Sampson D, Lozzi A, Kelly P and Brown J
Proceedings of the 15th ESV 1996
Sled tests to determine the effects of using different harness slot positions. The optimum mounting height is level with the child's shoulders. If this is not possible then the next higher slot should be used. The Australian Standard should require that the highest slot be no lower than the average shoulder height of the oldest users for which the restraint is intended.

M25 Evaluation of aftermarket devices to reposition shoulder belts
Sullivan L and Chambers F
Proceedings of the 15th ESV 1996
Sled tests on 3 brands of aftermarket devices for improving the fit of the sash portion of a seat belt when worn by small adults or children. "All of the devices evaluated in this study produced some degradation in the performance of the lap/shoulder belt system as compared to baseline conditions...". The authors note that the 1994 amendments to FMVSS 208 to improve seat belt fit and comfort should reduce demand for these devices.

M26 A comprehensive surveillance system for child occupant protection
Winston F et al
Proceedings of the 16th ESV 1998
Limitations of current crash databases are described. A new system which utilises insurance claim settlements has been developed in Philadelphia. Telephone surveys follow up on notifications and some crash investigations are conducted. MADYMO modelling is used to simulate some crashes and to determine the possible effects of changes to the restraint system.

M27 Airbags - Consumer information on airbag on-off switches
NHTSA 1998
NHTSA web site
Description of the US policy and procedures concerning passenger airbag switches.

M28 Lap-only seat belts: findings from the CAPFA study
Henderson M 1995
Proceedings of The Lap Belt Safety Conference
Of the 247 cases in the CAPFA Study 35 children used a lap-only seat belt and one used a lap-only seat belt in conjunction with a booster seat. "The lap seat belt is an incomplete restraint - to be used only when no better system is available. There was significantly greater incidence of belt-induced abdominal injury among lap-belt wearers than lap/sash users". Incidence of head injuries were similar despite that reduced likelihood of head contacts in the centre rear seat. A mechanism of fatal injury was found to be axial tension in the spinal cord due to the deceleration forces when the body was flexed over the seat belt, combined with relatively insignificant head contact. This occurred with one lap-seat belt wearer and the case of the lap seat belt with booster seat - which was considered to be a dangerous combination.
Regular report on observational surveys of seat belt usage in NSW. In an unpublished report, Michael Paine conducted further analysis of the data to examine trends with child occupants. Key results were:

- Total of 30,842 occupants in 20411 vehicles. 9.1% of VEHICLES had at least one child on board. 13% had at least one rear seat occupant.
- Of the 16802 CARS, 12.5% had at least one rear seat occupant, 0.9% had three occupants in the rear seat and 9.6% had a child onboard.
- Of the 1614 CARS WITH CHILDREN ONBOARD: 80% had at least one child in the rear seat, 62% had an infant on board and 2.3% had two infants and one other rear seat occupant [implications for ISOFIX proposal].
- For comparison, for the 110 cars in the CAPFA Study: 86% had at least one child in the rear seat, 52% had an infant onboard, 4% had two infants and other occupant in the rear seat.

3 CASE STUDIES.

EXCESSIVE EXCURSION A PROBLEM

TNO P SERIES NOT BIOFIDELIC, NOT ABLE TO EVALUATE PROTECTION IN DETAIL

Comprehensive review of child restraint issues. Supportive of Australian practices.

Research report for the NSW Department of Transport. Accident statistics involving school buses, objectives of the crossing control arm, application to NSW, on-road observations of children near school buses (without a crossing control arm), closed-road observations of children near a bus with a crossing control arm. It was found that the NSW situation was very different to that in the USA where, in many states, motorists are supposed to stop for a stationary school bus. The crossing control arm may introduce additional dangers in the NSW situation where children are taught to "wait, watch, walk".
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>N02</td>
<td>Benefits from changes in vehicle exterior design - in Europe</td>
<td>Ashton S and Mackay G M</td>
<td>1983</td>
</tr>
<tr>
<td></td>
<td>Pedestrian Impact Injury and Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patterns of injury in real world</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>crashes. Design measures to reduce injury are discussed. If vehicles were designed such that there were no [severe] vehicle contact head, pelvis and leg injuries at impact speeds below 40km/h then there would be a reduction of about one third in the number of pedestrians seriously injured when struck by the front of a car. Arguably, the benefits from [pedestrian friendly] car exterior designs are equal to or greater than the benefits from the provision of passive restraints for occupants. See also Ashton S (1982) “Vehicle design and pedestrian injuries”, Pedestrians Accidents, John Wiley & Sons.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N03</td>
<td>Vehicle engineering to protect vulnerable road users</td>
<td>Bly P</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>The Vulnerable Road User, International Conference on Traffic Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Careful design of the front of cars can greatly reduce injuries caused to pedestrians they may hit. The requirements need not be very restrictive of styling and need not add significantly to overall cost”. “Safer car fronts and truck under-run guards protect other road users: they do not benefit the vehicle owner, who has little incentive to purchase them...the way forward seems to require regulation...”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N04</td>
<td>Risk and safety on the roads: the older pedestrian</td>
<td>Clark T, Packham D, Salter D and Silcock D</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>AA Foundation for Road Safety Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33% of British road fatalities are pedestrians.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50% of these are people aged 60 or more.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accidents involving older pedestrians are more likely when the pedestrian is on the far side of the road - an indication that faulty judgement of the speed and distance of approaching vehicles is a factor (most of these accidents occurred in daylight during fine weather and women were at higher risk). However, a laboratory study found the relative speed judgement of older people was no worse than a control group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N05</td>
<td>The practicalities of engineering cars for pedestrian protection</td>
<td>Clemo K, Davies R and Keys S</td>
<td>1998</td>
</tr>
<tr>
<td></td>
<td>Proceedings of the 16th ESV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIRA has carried out many tests to the EEVC pedestrian impact procedures. “It appears that cars will need to undergo profound changes in design to meet the required standard” [compare this conclusion with Lawrence below].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N06</td>
<td>Injury pattern of pedestrians hit by cars of recent design</td>
<td>Foret-Bruno J, Faverjon G and Le Coz J</td>
<td>1998</td>
</tr>
<tr>
<td></td>
<td>Proceedings of the 16th ESV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>929 cases of car and pedestrian collisions were evaluated. “At the same impact speed, injury frequencies related to every body area are statistically lower, compared to those found for cars designed in the 70s”.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An analysis of head injuries in real world pedestrian accidents

Greetham and Guenther D 1983

Pedestrian Impact Injury and Assessment

1042 pedestrian accidents investigated. Elderly pedestrian were found to be at a much higher risk of receiving severe injuries (AIS4+) at impact speeds above 33km/h (persons over 60 had 2.5 times the risk of younger people, including children) or when impacting stiff structures. Severe injuries were more often caused by vehicle contacts than ground contacts (20% of vehicle contacts were AIS4+ compared with only 7% of ground contacts).

Analysis of circumstances and injuries in 217 pedestrian fatalities

Harruff R, Avery A and Alter-Pandya A 1998

Accident Analysis and Prevention

Retrospective analysis of fatal pedestrian accidents over a six year period. Proportions of fatal injuries (not cumulative): head 73%, torso 51%, extremities 30%. A related study found that pick-up trucks were over-represented in pedestrian fatality statistics. Based on limited information such as speed zoning the authors concluded that vehicle speed alone was a poor predictor of extent of pedestrian injuries. Elderly pedestrians were most vulnerable.

Update on Pedestrian Crash Data Study

Isenberg R and Chidester A 1998

Proceedings of the 16th ESV

Results of more than 200 pedestrian collisions are presented. Vehicle/pedestrian interaction, injuries, physical characteristics and avoidance actions are analysed. See also 15th ESV.

EEVC test methods to evaluate pedestrian protection

Jansenn E 1996

Proceedings of the 15th ESV

Comprehensive report on the EEVC-developed tests: legform to bumper, upper legform to bonnet leading edge and headform to bonnet top. "Test programs on current cars have shown that it is technical feasible to fulfil the requirements...with new car designs". The requirements should be extended to cover aftermarket bullbars.

Pedestrian injury - analysis of the PCDS field collision data

Jarrett K, Reynolds D and Saul R 1998

Proceedings of the 16th ESV

The Pedestrian Crash Data Study (PCDS) is collecting data about pedestrian collisions in the US. Analysis covers age, impact speed, injured body region and vehicle components which caused injury. Changes in injury patterns over the past 20 years are noted. Societal costs of pedestrian injuries are presented.

Pedestrian safety testing using the EEVC pedestrian impactors

Lawrence G and Hardy B 1998

Proceedings of the 16th ESV

Report of TRL tested conducted in accordance with EEVC procedures - mainly under Euro-NCAP. "...solutions to the problem of achieving better pedestrian safety are often readily available, low cost and could be applied over a higher proportion of the car surface".

VEHICLE SAFETY BIBLIOGRAPHY
VEHICLE SAFETY BIBLIOGRAPHY

N13 Accidents to young pedestrians
Lawson S 1990
Birmingham City Council.
Analysis of 2470 accidents involving young pedestrians (19 and under) in the Birmingham area between 1985 and 1988. 11 of the 30 fatalities to children 9 or under were immediately outside their home. Only 10% were at locations where they were crossing for the first time. One third of all child pedestrian casualties were on a trip to or from school and 25% were going to or from shops. 20% or all casualties were in hospital for more than a month. 1.6% received severe disability and 16.4% had some residual dysfunction. 66% of drivers had regularly driven through the site (50% were returning home from work!). 20% of the pedestrians admitted they did not look for traffic before stepping out and 50% said they did not see the vehicle before the accident. 33% of drivers said they had no time to take avoidance action. 42% of drivers said that a parked vehicle or other obstruction prevented them from seeing the pedestrian.

N14 Application of ITS to enhance vehicle safety for elderly and disabled
Ling Suen S and Mitchell C 1998
Proceedings of the 16th ESV
Driver/occupants aids are "mayday" systems, night vision enhancement, obstacle detection and navigation/traffic information systems. Pedestrians could be assisted by people detectors at signal controlled crossings - these detect slow-moving pedestrians and extend the signal phase. "Insufficient effort is being made to ensure that ITS equipment is easy for elderly and disabled people to use".

N15 Pedestrian safety
McFadden M 1996
Proceedings of the 15th ESV
Analysis of 350 pedestrian fatalities in Australia during 1992. 66% had serious (severe?) head injuries, 47% had serious chest injuries. 74% were considered primarily responsible for the accident. Alcohol was a factor in 30% of the cases. 10% emerged from behind parked vehicles (on the same side of the side). 85% occurred in built-up areas and 66% were in areas with a speed limit of 60km/h or less. 26% were in "residential" streets. "It is probable that bullbars are involved in 20% of pedestrian fatalities". In 42% of cases there was no braking or swerving prior to impact. A further 12% were unknown, suggesting that no avoidance action is taken by the driver in about half of all pedestrian fatalities. 40% of fatally injured pedestrians were over the age of 60 years.

N16 Bumper structure for pedestrian protection
Proceedings of the 15th ESV
Honda's research into the use of a readily-crushable bumper to reduce injuries to pedestrians. Dummy tests were used to confirm the simulations.
VEHICLE SAFETY BIBLIOGRAPHY

N17 Injury causing parts and influence parameters in pedestrian accidents
Otte D
Proceedings of the 16th ESV
760 cases of car pedestrian collisions were analysed.
81% were at impact speeds up to 40km/h.
Many of the severe head injuries occur at speeds
of more than 40km/h. "Current model cars have a lower injury
severity risk for head, thorax and lower extremities compared
with older models". The EEVC pedestrian impact test procedure is
discussed.

N18 Towards a pedestrian-friendly bonnet
Otubushin A and Green J
Proceedings of the 16th ESV
Approximately 60% of pedestrian head strikes to vehicle front
structures are to the bonnet. Bonnet design has the potential to
reduce the severity of the resulting head injuries. A series of
headform impacts to the bonnets of 7 European vehicles was
conducted.

N19 Evaluation of school bus signalling systems
Paine M and Fisher A
Research report for NSW Department of Transport.
Field evaluation of several school bus signalling systems, analysis of
signal range requirements (for motorists to be given sufficient
warning in order to slow down), visual ergonomics of flashing
signal lights, specification of signal requirements, comparison
with the systems evaluated in the field. High-intensity
fixed-beam "wig-wag" lights at the front and rear were found be
the best of the evaluated systems.

N20 Flashing lights on school buses
Paine M and Fisher A
Proceedings of 15th ESV
Based on the research report for
the NSW Department of Transport (see above). Bright,
high-mounted, fixed beam lights have the advantage that the
signals are highly visible from 250m away but approaching
drivers ride under the beam (move into a lower intensity
portion) as they get closer to the bus. Copy on the World Wide

N21 Pedestrian head impact testing at the University of Adelaide
Streeter L, Anderson R, McLean J and Garrett N
Proceedings of the 16th ESV
A free-flight headform
launcher is being used to reconstruct actual pedestrian/vehicle
impacts.

N22 The risk of injuries to pedestrians for different car models
Tingvell C, Lie A, Kullgren A, Kraft M
Proceedings of the 16th ESV
Real world accidents with pedestrians were studied in relation to car mod
N23 **Dart out accidents involving young pedestrians**

Vaughan R
Proceedings of Accident Investigation, Reconstruction, Interpretation
1997

The maximum safe travelling speed is shown to be less than 10km/h for four scenarios. "Strategies for avoiding young pedestrian emerging collisions by lowering speed limits are unlikely to succeed, although injury severity will be reduced". This is a rather pessimistic analysis.

N24 **Realization of pedestrian protection measures on cars**

Wolert W, Blodorn J, Appel H and Kuhnel A
Pedestrian Impact Injury and Assessment
1983

A description of the "pedestrian friendly" features of the UNI_CAR experimental safety vehicle: a low, long gently inclined front end with a smooth surface rounded off in all directions; energy absorbing front and bonnet; marked withdrawal (contours?) of the roof edges and sides and steeply raked windscreen [many of these features are now appearing in modern car designs - but mainly for aerodynamic purposes]. Includes a graph of HIC vs head impact velocity for impacts with the bonnet - it was found that the HIC stayed below 1000 up to impact speeds of about 14m/s (50km/h) and then climbed rapidly above 1000. Also at speeds above about 10m/s the head impact speed (to bonnet) was similar to the collision velocity (ie speed of the car).

N25 **Computer simulation system for car-pedestrian accident**

Yoshida S
Proceedings of the 16th ESV
1998

A simulation system was developed by Honda to predict whole body pedestrian dynamic behaviour and the influence of car shape and structure.

N26 **AUSTRALIA'S INVOLVEMENT IN IHRA PEDESTRIAN SAFETY**

Anderson R
Road Safety 2001, MUARC, Melbourne
2001

N27 **YOUNG PEDESTRIANS AND REVERSING MOTOR VEHICLES**

Paine M and Henderson M
Road Safety 2001, MUARC, Melbourne
2001

N28 **PEDESTRIAN INJURY PROJECTION IN AUSTRALIA IF VEHICLES ACHIEVE HIGH STAR RATING**

Coxon C
Proceedings of the 17th ESV
2001

No estimate of effectiveness

N29 **SUMMARY OF IHRA PEDESTRIAN SAFETY WG**

Mizuno Y
Proceedings of the 17th ESV
2001

Making cars 'safe' at 40km/h reduces fatalities by 35% and serious by 19%

N30 **EVALUATION OF PEDESTRIAN AIRBAG THROUGH MODELLING AND TESTING**

Holding P
Proceedings of the 17th ESV
2001

CATEGORY O
Motorcycles and bicycles
O01 New developments in retrospective data banks of accidents
Anselm D and Langwieder K
Proceedings of the 16th ESV
1998
The German Insurance Association (GDV) accident database is described. It includes details on 600 motorcycle/car crashes, including crash characteristics and injury patterns.

O02 Analysis of the passive safety of motorcycles
Berg F, Niewohner W, Schmitt B, Epplla J and Bu
Proceedings of the 16th ESV
1998
216 motorcycle accidents were analysed. Collision characteristics, injuries and causes of injuries are described. Pointers are given toward possibilities for improvements.

O03 Collision dynamics and injury causation in motorcycle accidents
Careme L
1990
Rider-passenger Protection in Motorcycle Collisions
In depth study of 23 motorcycle crashes involving AIS4+ injuries to neck and chest. The most severe injuries resulted during impacts where the rear wheel of the motorcycle lifted during impact and the rider was pitched forward. The concept of an energy absorbing structure which resisted this pitch motion was proposed.

O04 Development and testing of a motorcycle airbag restraint system
Chin B, Okello J, McDonough P and Grose G
Proceedings of the 15th ESV
1996
TRL simulations and tests of a specially designed airbag system for a (large) Norton Commander motorcycle. The system was found to fully restrain the rider during the sled tests and neck loads were significantly less than published tolerance values.

O05 Motorcycle and bicycle protective helmets
Corner J, Whitney C, O'Rouke N and Morgan D
FORS CR 55, May 1987
1987
Post-crash investigation of 329 motorcycle and bicycle accidents. Of the unhelmeted bicyclists who received severe head injuries 40% would definitely have had an improved outcome if a substantial helmet had been worn. Laboratory simulations of impacts and sliding motions. It was concluded that the Australian Standards needed to provide improved protection for facial (particularly jaws) and temporal areas, to soften helmet liners (substantial reduction in liner stiffness) and to improve the sliding properties of helmets.
VEHICLE SAFETY BIBLIOGRAPHY

O06 Motorcycle related injuries to children and adolescents
Haworth N, Ozanne-Smith, Fox B and Brumen I
MUARC Report 56, 1994
Analyses of hospital admissions. Also a study of 185 injured motorcyclists. "The most effective intervention currently available to reduce motorcyclist injuries is the motorcycle helmet". Uncertainty about the effectiveness of leg protection and airbags. Recessed fuel filler caps reduce injury potential. Protective clothing can significantly reduce soft tissue injury and increase thresholds for some serious injuries. A 1991 benefit/cost study by MUARC indicated that protective clothing would need to be only 2.5% effective to reach break even point. Conspicuity - failure of a motorist to see an approaching motorcycle may have been responsible for between 12% and 21% of crashes. Daytime use of headlights appears effective (about three times less likely to be involved in a crash). Noted that a headlamp which is in use at the time of a crash can increase the risk of fire [this appears doubtful but there may be a need for a fuel system integrity test]. Maintenance of brakes, suspension, clutch and throttle may be an issue.

O07 Motorcycle crash countermeasures
Haworth N and Schulze M
MUARC Report 87, 1996
Extensive literature review covering crash avoidance (conspicuity, rider training, car driver training, licensing and enforcement, alcohol, pillion passengers, brakes, rider vision, engine capacity and road environment issues) and injury reduction (helmets, protective clothing, leg protection and airbags). A workshop analysed the achievability and desirability of each countermeasure. Notable results for crash avoidance were: improved road environment, conspicuity of other vehicles and conspicuity of motorcyclists rated high but research was needed on these issues; better maintenance (brakes, suspension, clutch and throttle), daytime headlights/running lights and discouraging use of car phones rated moderate; ABS, bright clothing, pillion restrictions and engine restrictions rated low. Notable results for injury reduction were: protective clothing and footwear, reducing danger from bullbars, improved truck under-run protection, improved education/advice about fastening helmets rated high; expiry dates on helmets, banning sale of second hand helmets and encouraging motorcycle designs which are less hazardous for an ejected rider rated moderate; standards for protective clothing, mandatory full-face helmets and investigation of leg protection devices, while desirable rated low for achievability. It was noted that novices are restricted to low capacity bikes which are unlikely to have advanced features such as ABS (and airbags) but this was not a safety concern. DIY maintenance is a problem because the owners can see the components. Strapless helmets are being developed in France and USA. These use an air bladder to retain the helmet. Window tinting on cars may make it more difficult to detect motorcyclists (also the approaching cyclists cannot see whether the motorists is looking at them).

O08 Feasibility research on a prototype airbag system for motorcycles
Iijima S
Proceedings of the 16th ESV 1998
Describes Honda's research program on motorcycle airbags. Some benefits and potential adverse effects were found.
VEHICLE SAFETY BIBLIOGRAPHY

O09 Braking, stability and handling of motorcycles
 Juniper R & Good M
 FORS CR 29
 1983
 This study involved a literature review and comprehensive analysis of motorcycle dynamics. In regard to accident risk, the study found that "the effect of motorcycle handling characteristics on accident risk has not been studied, due in part to the lack of knowledge of appropriate ways to characterise handling qualities".

O10 Safety potential of a new motorcycle concept
 Kalliske I and Albus C
 Proceedings of the 16th ESV
 1998
 BMW has developed a new concept in motorcycling. The vehicle incorporates a roll cage, frontal crush element and a rider restraint system. One outcome might be exemption from wearing a helmet (on the basis that it would "as safe as" a normal motorcycle).

O11 Improvement to motorcycles by protectors fitted to rider's clothing
 Koch H
 Proceedings of the 15th ESV
 1996
 Assessment of protective devices conforming to draft CEN standard 1621-1. Energy-absorbing devices to protect shoulders, elbows, forearms, hips, knees and lower legs. "Leather clothing...does not influence the number or severity of injuries in collisions". Improvements to materials now mean that effective protective devices can be developed.

O12 The mortality rate in motorcycle accidents - wearing helmets
 Korbori N, Yamaki T and Nakagawa Y
 The Vulnerable Road User, International Conference on
 1991
 These neurosurgeons examined trends in fatal head injuries to motorcyclists before and after mandatory helmet wearing. They found that although helmets reduce the incidence of focal brain injuries, they are less effective at preventing the severe life-threatening brain injuries such diffuse brain injury. A change is rotational velocity of the head at the time of a blow is one of the causes of this type of injury.
VEHICLE SAFETY BIBLIOGRAPHY

O13 Appropriate and inappropriate strategies for injury reduction

Ouillet J 1990

Rider-passerger Protection in Motorcycle Collisions
Review of a range of countermeasures. Head injury rates (per 1000 crashes) for non-helmeted riders were three times that of helmeted riders. Rider kinematics in a collision showing the rider being pitched forward. NHTSA-sponsored study of a "crashworthy" motorcycle (roll-cage, anti-pitch front crash bar, airbag, padded knee bolsters) - "it failed to protect the dummy in a collision with a moving car". "tank mounted airbags worked very well in perpendicularly impacts with a stationary car...[but] were nearly useless in impacts with moving cars". "...adding more and more structures to the motorcycle does not work". The assumption that loss of leg space is correlated with severity of leg injuries is disputed: a study of motorcycle crashes found that of 21 cases involving severe leg injuries 57% had little or no loss of leg space. Also out of 16 cases where the leg space was completely collapsed there were 6 severe leg injuries. "... a fundamental flaw in the strategy of putting the protection on the motorcycle: the rider's body moves around too freely during impact to derive much protection from stationary structures". Airbag jackets appeared to show promise in early tests but were dropped from research in favour of tank-mounted airbags. "Perhaps one of the primary benefits of heavy clothing may be the reduction of badly contaminated wounds that delay and prolong medical treatment". Fuel spills were reported in 62% of 900 motorcycle accidents and fire in 14 cases.

O14 Pedal cycle helmet effectiveness: a field study of accidents

McIntosh A, Dowdell B and Svensson N 1998

Accident Analysis and Prevention,
42 cases where a pedal cyclist's helmet sustained an impact during a road accident were studied. Where possible, helmet impact dynamics were reproduced to better understand the nature of the impact and anu failure mechanisms of the model of helmet. In 75% of the cases there was no head injury. There were 4 fatalities but only one was due to head injuries alone. It was found that impacts to the tempo-parietal region produce the greatest risk of injury but parts of this region could be below the test line for the current Australian Standard and therefore might not provide adequate protection. The reduced protection provided by the rim region of the helmet was also noted. Some helmets were found to separate into two or more pieces after the initial impact and this could be dangerous if a second impact occurred.

Nairn R 1993

The review included motorcycle design features such as anti-lock braking systems, crash protection and air bags. In the case of anti-lock and integrated braking systems it was estimated that the cost would be $1,200 per motorcycle and that the measure would be cost-effective if it reduced the cost of motorcycle accidents by at least 5%. An estimate of accident savings was not given.

O16 Bike racks on the front of buses

Paine M 1997

Report for ACT Dept Urban Services
Literature review, description of the design of a proprietary bike rack in use in the USA. Comments from users. Mechanisms for pedestrian injury. Scarce statistics on pedestrian/bus accidents. Effects of bike rack on injury, road space requirements, driver visibility, visibility of bus lights, cognitive burden on bus driver and overall community health issues resulting from increased bicycle travel.
O18 An overall evaluation of leg protectors based on ISO 13232
Rogers N and Zellner J
Proceedings of the 16th ESV
501 cases of motorcycle accidents were analysed by 200 computer simulations, 32 laboratory tests and 14 full-scale tests. Results are presented (see [15th ESV] for negative findings on leg protectors - head and upper body injury risk increased). See also a paper by the same authors in the 15th ESV.

O19 How can we improve the safety of vulnerable road users?
Swadling D
ARRB Transport Research WA
Effect of speed on injury severity, WA accident statistics, lack of bicycle parking facilities, road design issues, bicycle lights and reflective clothing (summary of ARRB research report), manual and motorised wheelchairs.

O20 Positional stability of motorcycle helmets
Thom D, Hurt H, Ouellet and Liu W
Proceedings of the 16th ESV
Current motorcycle helmet performance standards test the strength of the retention system but the authors claim this does not necessarily ensure that the helmet will be retained on the head, even when securely fastened. Laboratory tests and volunteer tests were conducted. Deficiencies in both the DOT and ISO standards need to be addressed.

CATEGORY P Heavy vehicles

P01 Improving the safety of commercial vehicles’
Berg F, Grandel J, Niewohner W and Morschheu
Proceedings of the 15th ESV
DEKRA and Mercedes Benz research into heavy vehicle accidents. Truck occupant protection measures include: reducing the size of the steering wheel and making it collapsible, padding surfaces and removing sharp edges in the cabin and improve cabin strength. It was estimated that about 21% of truck driver injuries could have been prevented with an airbag (14% "possible" plus 7% "likely").

P02 Pointers towards the improvement of safety in buses - Germany
Berg F and Niewohner W
Proceedings of the 16th ESV
Crash analysis determined collision parameters such as mass, impact directions, delta-V, and were used to conduct two bus crash trials. Causes of the bus rolling onto its side were examined.

P03 Improved crashworthy designs for truck underride guards
Bloch B and Schmutzler L
Proceedings of the 16th ESV
Detailed accident investigations were used to evaluate the effectiveness of typical underride guards. "Clearly improved designs are needed". Innovative practical designs are now available. Existing regulations should be upgraded and manufacturers should be encouraged to "go beyond any minimal requirements...".
P04 Heavy truck crashworthiness - case studies of truck occupant fatality
Cheng L, Werner S, Khatua T, Ray R and Lau E
Proceedings of the 15th ESV
Analysis of over 9000 heavy truck fatal accidents (FARS data) and in-depth analysis of 68 cases (NTSB data). 22% of the NTSB crashes were offset head-on crashes between trucks, with substantial intrusion on the driver's side of the cabin, 52% were rear-end collisions between two trucks (often with the trailer tray intruding into the colliding truck's cabin), 12% were collisions with (unyielding) fixed objects. In 60% of the cases the truck rolled onto its side or more (not mutually exclusive from the above percentages). 16% of the crashes were judged to be "survivable" if seat belts had been used.

P05 Body engineering considerations to improve the safety in minibuses
Dickison M and Buckley S
Proceedings of the 15th ESV
Examines the feasibility of fitting lap/sash seat belts in minibuses. MIRA has developed a low cost, low weight solution which is applicable to most vans of unitary construction. Computer modelling is necessary to ensure that the structure is adequate.

P06 Buses and coaches: evacuation
Gurley A
Interior Safety of Passenger Transport
A review of European investigations into the evacuation of buses. Several serious bus crashes are evaluated. Difficulties with trial evacuations are discussed. Evacuation times could be reduced by 50% after two practice runs with school children.

P07 School bus seat belts: their fitment, effectiveness and cost
Henderson M and Paine M
Research report for the NSW Department of Transport.
Literature review, the task of transport of school children in NSW, bus safety standards, occupant protection principles and the effectiveness of seat belts in buses, usage issues, technical issues (most buses are unsuitable for seat belts without major reconstruction), other occupant protection options, cost effectiveness of a range of options. It was recommended that fitment of seat belts in large route service buses not be pursued as a mandatory safety measure, that handrails on seats be replaced or padded, that a code of practice be developed for retrofitting seat belts to small buses (now available), that provisions in the ADRs which exempt some small buses from fitting seat belts be withdrawn and that bus door safety be reviewed (all but one of the fatalities analysed during the study were from door entrapment).

P08 Safety of buses and coaches - problems and recent solutions
Kecman D
Automotive Passenger Safety,
Review of Cranfield Impact Centre's recent research on coach safety. Rollover strength, seats and seat belts.
VEHICLE SAFETY BIBLIOGRAPHY

P09 Seat strength in minibuses
Kecman D, Lenard J and Thomas P
Proceedings of the 16th ESV
The crashworthiness of seats in minibuses is assessed. A severe minibus accident has the potential to result in multiple casualties.

P10 Safety measures for the structure of trucks and buses
Miyazaki T
Proceedings of the 16th ESV
Japan has established 2 expert committees to look at the role of vehicle structure in injuries to heavy vehicle occupants. A range of safety measures is proposed.

P11 A study of car-truck impacts - energy absorbing guards
Murray N
Monash University Dept Civil Engineering
Physics of car-truck impacts. Energy-absorbing structures. Designs issue are: the whole system (truck, guard, car, occupant) must be considered; the truck guard would need to absorb at least 100kJ of energy (0.5m stroke and actuation force of 200kN); standardised bumper heights. Preliminary estimates indicated that the benefit cost ratio would, at best, be marginal. Compatible bumper heights would be more effective.

P12 Australian bus safety standards
Paine M
Project report for National Road Transport Commission.
Review of construction standards and purchase specifications for buses in each Australian state and territory. Comparison with Australian Design Rule (ADR) requirements. Identification of potential additions to the AD RS based on the bus accident study. Issues included interior padding, seats, seat belts, buses used for school excursions, automatic transmissions, driver's field of view, tachographs, conspicuity and:

<table>
<thead>
<tr>
<th>Issue</th>
<th>% of all</th>
<th>% of Fat</th>
<th>% Ser.inj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>3%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Brake failure (mostly older buses)</td>
<td>6%</td>
<td>18%</td>
<td>13%</td>
</tr>
<tr>
<td>Evacuation an issue (emergency exits)</td>
<td>27%</td>
<td>67%</td>
<td>52%</td>
</tr>
<tr>
<td>Door entrapment (estimate from other work)</td>
<td>2 per year</td>
<td>8 per year</td>
<td></td>
</tr>
</tbody>
</table>

P13 Bus accidents in Australia: 1970-93
Paine M
Project report for National Road Transport Commission.
Analysis of bus accident statistics from each state and territory. Analysis of press clippings and reports covering 240 bus crashes or incidents

P14 Belt systems in passenger coaches
Rasenack W, Appel H, Rau H and Rietz C
Proceedings of 15th ESV
Use of computer simulation to assess the effectiveness of various seat belt systems in coaches. A problem in rollover crashes with occupants "hanging in the air" unable to release the seat belt is postulated but this disadvantage (if it exists) does not outweigh the advantages of seat belts in preventing injury.
VEHICLE SAFETY BIBLIOGRAPHY

P15 Development and testing of rear underrun barriers
Rechnitzer G, Powell C and Seyer K
Proceedings of the 15th ESV 1996
Design and testing of a prototype system. Fibreglass composite tubes are placed within light-weight steel tubes provide very effective energy absorption.

P16 Research on the evacuation readiness of bus crews and passengers
Shiosaka Y and Kuboike T
Proceedings of the 15th ESV 1996
Trials of bus emergency evacuation procedures. Regular door and window exits were evaluated. Of concern is that all school children and half of the aged persons failed to exit the bus during the first test. Difficulties were found with reading instructions, operating the opening mechanisms and fear about the height above the ground. An improved display overcame many of the problems.

P17 Towing caravans and trailers safely
Staysafe
Staysafe 22 1992
Crash involvement of caravans and trailers in NSW. Issues include tow bar design, brakes, LPG equipment, crashworthiness, roadworthiness, tyres, suspension design (roll steer) and stability.

P18 Heavy vehicle crash test method in Japan
Sukeygawa Y, Matsukawa F and Oki W
Proceedings of the 16th ESV 1998
Crash tests of a car into a truck fitted with an EEVC “Front Underrun Protection System” are described. The impact speed was 65km/h. Full, 50% and 30% overlap were tested. Effects on injury risk and car deformation are discussed.
VEHICLE SAFETY BIBLIOGRAPHY

P19
Sweatman P et al
NSW Heavy Vehicle Crash Study - Final Technical Report.
FORS CR 92 August 1990.

Summarises the findings of a study of 83 heavy vehicle crashes on two NSW highways. In general, vehicles were not available for inspection in this retrospective study therefore the report cautions that the results for vehicle factors must be considered a lower bound. The role played by various vehicle factors is discussed. An estimate is made of the number of crashes in which each countermeasure would have influenced the outcome.

<table>
<thead>
<tr>
<th>Vehicle Countermeasure</th>
<th>Number of crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced truck frontal stiffness</td>
<td>40 (48%)</td>
</tr>
<tr>
<td>Improved truck cab crashworthiness</td>
<td>20 (24%)</td>
</tr>
<tr>
<td>Truck seat belts fitted/used</td>
<td>19 (23%)</td>
</tr>
<tr>
<td>Speed limiters/tachographs</td>
<td>18 (22%)</td>
</tr>
<tr>
<td>Driver fatigue detectors</td>
<td>16 (19%)</td>
</tr>
<tr>
<td>Improved car crashworthiness</td>
<td>15 (18%)</td>
</tr>
<tr>
<td>Truck brake compatibility & ABS</td>
<td>11 (13%)</td>
</tr>
<tr>
<td>Fatigue detectors in cars</td>
<td>11 (13%)</td>
</tr>
<tr>
<td>Remove truck bullbars</td>
<td>10 (12%)</td>
</tr>
<tr>
<td>Lower height of truck & bus front bumpers</td>
<td>9 (11%)</td>
</tr>
<tr>
<td>Lower truck centre of gravity (rollover)</td>
<td>9 (11%)</td>
</tr>
<tr>
<td>Radar braking on trucks & buses</td>
<td>6 (7%)</td>
</tr>
<tr>
<td>Improved truck conspicuity (lights/refl)</td>
<td>5 (6%)</td>
</tr>
<tr>
<td>Improved truck load security</td>
<td>5 (6%)</td>
</tr>
<tr>
<td>Continued random truck inspections</td>
<td>4 (5%)</td>
</tr>
<tr>
<td>Annual truck inspections</td>
<td>2</td>
</tr>
<tr>
<td>Improved tyre maintenance</td>
<td>2</td>
</tr>
<tr>
<td>Improved truck driver visibility</td>
<td>2</td>
</tr>
<tr>
<td>Truck side under-run protection</td>
<td>2</td>
</tr>
<tr>
<td>Truck rear under-run protection</td>
<td>2</td>
</tr>
</tbody>
</table>

Note these were confined to highway crashes.

P20
Sweatman P et al
Heavy vehicle crashes in urban areas
FORS CR 155.

Literature review, analysis of mass crash data and detailed crash investigation of 88 crashes. 50 to 75% of serious rigid truck crashes and 25 to 50% of serious articulated vehicle crashes occur in urban areas. 25% of articulated vehicle crashes in urban areas were fatal. Heavy vehicles were judged to be wholly or partially responsible in 33% of the crashes. Vehicle factors in these crashes were: drivers field of view (13%); lack of side underrun protection (11%); unguarded wheel areas (11% - mainly for pedestrians and cyclists); length and width (11%); stiffness of rear structure (7%); lack of rear underrun protection (5%); swept path (7%); maintenance (7% - mainly older trucks); stiffness of side structure (4%); stiffness of front structure (4%) and front underrun protection (4%). Potential ITS technologies are: pedestrian detectors; on-board red traffic signal indicators and heavy vehicle-sensing traffic signal systems (running red lights was found to be a problem); stability warning systems; route guidance and "Mayday" systems.

P21
Tomassoni J
A look at the NHTSA compliant underride guard at speeds above 30mph
Proceedings of the 16th ESV
1998

A series of 8 underride crash tests indicated that underride magnitude was marginally close to passenger compartment intrusion at 30mph. The performance of minimally compliant systems at speeds above 30mph are assessed.
VEHICLE SAFETY BIBLIOGRAPHY

P22 Design of an energy absorbing truck front bumper bar
Wasiowych A, Lozzi A and Griffiths M
Proceedings of the 15th ESV
1996
Full scale car to truck crash tests were conducted to assess potential improvements to front bumpers on trucks (underrun barriers). The device included innovative energy absorbing elements.

P23 Pedestrian safety: school children around buses
Staysafe
Staysafe 26
1992
Literature review. Accident data. Regulations. Vehicle engineering issues. Behavioural issues. Traffic and road engineering issues. Technical recommendations included: bright red and amber flashing lights; 40km/h limit when passing buses with the lights flashing; investigate a safety boom; improved bus mirrors; improved demisters; investigate loudspeaker systems; door sensors to reduce risk of entrapment.

P24 Safety of school children near buses
Roads and Traffic Authority of NSW
School Bus Task Force Report
1992
Accident data analysis. 107 casualties between 1988 and 1989; 5 were fatal, 38 were serious injuries; 65% were aged 12 or less but appeared to be peaks at the start of primary and high school [inexperience?]; 88% were in the afternoon [child more easily distracted]; 75% of cases the bus obstructed the motorists view; 50% were emerging from the front of the bus and hit by overtaking vehicle (all in 60km/h zones and none were fatal); 25% emerged from the rear of the bus and were hit by an oncoming vehicle (10 serious injuries and 3 fatalities, mostly in 80+ speed zones). Many children were described as "running". The problem of the bus hiding crossing children from oncoming motorists was examined in detail. Recommendations included flashing lights at the front and rear of the bus, a behavioural program (which became "Wait, watch walk") and making parents aware of the hazards of waiting on the other side of the road.
Influence of presence of bus. Review of current Australian and overseas practices. Strategies and countermeasures:

P25 The Travel Safe Report
Bus and Coach Association
Bus and Coach Association of NSW
1994
Survey of community perception of bus safety. Comparison of risk factors between various types of transport:

<table>
<thead>
<tr>
<th>Mode</th>
<th>% of passenger km</th>
<th>% of casualties</th>
<th>Relative risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>36</td>
<td>5</td>
<td>0.17</td>
</tr>
<tr>
<td>Car Passenger</td>
<td>39</td>
<td>46</td>
<td>1.19</td>
</tr>
<tr>
<td>Bicycle</td>
<td>1</td>
<td>17</td>
<td>39</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>6</td>
<td>27</td>
<td>5.2</td>
</tr>
<tr>
<td>Other</td>
<td>23</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>

P26 EVALUATION OF ISSUES ASSOCIATED WITH SEAT BELTS ON SCHOOL BUSES
SWADLING
ROAD SAFETY 2001, MUARC, MELBOURNE
2001

P27 RESEARCH ON BUS PASSENGER SAFETY IN FRONTAL CRASHES
MITSUISHI H
PROCEEDINGS OF THE 17TH ESV
2001
SLED TESTS OF BUS SEATS WITH 2-PT SEAT BELTS
VEHICLE SAFETY BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>POTENTIAL GAIN [FROM] SEAT BELTS AND AIRBAGS IN TRUCKS</td>
<td>SIMON M</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROCEEDINGS OF THE 17TH ESV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37% OF FATAIS, 36% SERIOUS, 22% MINOR</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>SEAT BELTS IN BUSES AND RECENT ACCIDENTS IN SPAIN</td>
<td>FERRER I</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROCEEDINGS OF THE 17TH ESV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HIGHLY EFFECTIVE IN 3 STUDIED CRASHES</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>SIMULATIONS OF LARGE SCHOOL BUS SAFETY RERAINTS</td>
<td>MCCRAY L</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROCEEDINGS OF THE 17TH ESV</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>LARGE SCHOOL BUS SAFETY RERAINT EVALUATION</td>
<td>ELIAS J</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROCEEDINGS OF THE 17TH ESV</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>IMPROVED SAFETY FOR MINIBUSES BY BETTER SEAT AND OCCUPANT RETENTION</td>
<td>LAWRENCE G</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROCEEDINGS OF THE 17TH ESV</td>
<td></td>
</tr>
</tbody>
</table>

CATEGORY Q Post-crash rescue and medical care

Q01	Design and implementation of an automobile collision notification system	Blatt A, Funke D, Donnelly B and Carter A	1996
	29th International Symposium on Automotive Technology and Automation	Comprehensive study and trial funded by NHTSA. "The life saving potential is obvious" but the extent of this potential has not been quantitatively demonstrated. The study is addressing this issue and is looking at the many technical and operational challenges. False alarms need to be kept to a minimum.	
	Propriety manual	Technical details about a system which is part of a traffic signals controller and detects the sound of an approaching siren. This avoids the need for special transmitters on emergency vehicles [but the technology is now dated].	
Q03	A searchable transportation fire safety bibliography	LaDue D and Kononen D	1998
	Proceedings of the 16th ESV	Over 1000 articles concerning vehicle fires are included in a searchable database, on CD ROM.	
Q04	Field data improvements for fire safety research	Lavelle J, Nelander J and Kononen D	1998
	Proceedings of the 16th ESV	Various US accident databases were analysed to evaluate the possible causes and effects of vehicle fires and to recommend enhancements to the databases to better understand the causes of vehicle fires.	
Post-crash treatment of automotive crash victims can be improved if the medical personnel have an indication of the crash characteristics. The authors analysed a range of crashes and found that some types of injuries could be predicted from key crash parameters. On-board crash sensors which could be interrogated by rescuers (or which automatically transmits crash data to a trauma centre) could assist in this approach.

New technology gives motorists an early warning

As a spin-off of space research NASA has developed an improved system for warning motorists that an emergency vehicle is approaching a controlled intersection. A visual display gives an indication of the direction from which the emergency vehicle is approaching.

The FARS database was analysed to determine the intensity, location and timing of fires in fatal crashes. Cases where the fire caused death were identified.

ENHANCING POST-CRASH SAFETY THROUGH AUTOMATIC COLLISION NOT.

TRIALS HAD 50% FALSE ALARMS.

 borrow the latest strategies for reducing injuries in road crashes (examples in brackets): 1. Preventing/reducing exposure to injurious "agents" (alternative travel modes, speed reduction); 2. Preventing inappropriate release of the agent (vehicle and road designs to simplify the driver's task); 3. Modifying the release of the agent (use of seat belts); 4. Separating in time or space or with physical barriers (restricting the transport of hazardous materials, median barriers); 5. Modifying surfaces and basic structures (airbags, removing projections); 6. Increasing resistance to injury (therapy for osteoporosis); 7. Emergency response or medical care and rehabilitation (systems that route patients to appropriately trained physicians).
VEHICLE SAFETY BIBLIOGRAPHY

R02 The potential gains for road safety from existing vehicle technology

Brown J and Holgate J 1998
Proceedings of the Developments in Safer Motor Vehicles Seminar
Serious injury rate by year of manufacture (decreasing from 5 serious injuries per 100 crashes in pre-1975 vehicles to 2 in 1995). Composition of NSW vehicle fleet. On current trends the % of older vehicles will increase (54% older than 10 years in 1997, predicted 57% in 2015). Strategies to reduce the age of the fleet and increase the uptake of safety options are discussed, including tax incentives, consumer information and targeting fleet buyers.

R03 Promoting the safe driving policy in NSW fleets of 20 or more vehicles

Collingwood V 1996
29th International Symposium on Automotive Technology and Automation
Description of the NSW Roads and Traffic Authority's program targeted at fleet operators. "...new vehicles will be chosen and equipped to enhance safe performance. Vehicles will be maintained, presented and operated for maximum safety". Attention is drawn to the results of NCAP tests and Used Car Safety Ratings. Benefits of the program include: community involvement at an organisational level; a means of tackling road safety problems outside the general deterrence approach; a means of targeting heavy vehicles; improved driving at work can carry over into non-work driving; integration of road safety and occupational health and safety and influencing the market for safety features in vehicles.

R04 Reducing traffic injuries through vehicle safety improvements

ETSC 1993
Background on the road crash situation in Europe and the car safety standards. Priorities in car design for accident avoidance: speed control, vision and conspicuity, ABS, ITS and need for accident research. Occupant protection design issues: improved steering wheel design, airbags, improved seat belts, improved leg protection by limiting footwell intrusion, protection for chest and abdomen in side impacts (structure and padding), improved neck protection (head restraint design) and kinematics in rear impacts (seats and seat belts), padding of upper interior, performance of door latches, fuel system integrity, effects of smaller vehicles, structural incompatibility.

R05 Comprehensive plan for ITS in Japan.

Government of Japan 1996
Booklet.
ITS issues relevant to occupant protection are: provision of public transport information (to encourage use of public transport), pedestrian route guidance, vehicle-pedestrian collision avoidance, automatic emergency notification and route guidance for emergency vehicles.

R06 Vehicle and Equipment Safety Issues

Griffiths M 1994
Road Safety 2000 Review Conference 1994
Comprehensive review of vehicle safety issues. Concern that advances made under the Australian Design Rule system had stalled during the 1980s (comparison with safety advances in the USA). Benefits of consumer-driven change such as NCAP.
R07 The crash safety of new car models - a comparative accident study

Lie A, Tingvell C and Larsson P
Proceedings of the 15th ESV
A car manufactured in 1985 has about twice the risk of a severe or fatal injury than a car manufactured in 1995. The decline in risk only started to show strongly from 1993 onwards. The improvement in crashworthiness has not been at the expense of an increase in aggressivity. Minor injuries are largely unaffected.

R08 The aging of the Australian car fleet and occupant protection

McIntosh L and Coxon C
Proceedings of the 16th ESV
Describes factors influencing the safety of occupants in older vehicles. Strategies for reducing the age of the fleet are discussed.

R09 ESV Government Reports - The Netherlands

Meekel G
Proceedings of the 15th ESV
Vehicle-related measures were assessed for accessibility, sustainability (emissions) and safety by a group of experts. Chances of implementation were assessed. The most promising measures for the short term were: active vehicle control, improved vehicle conspicuity, front and side underrun protection on heavy vehicles, improved integration of car and public transport. Other promising short term measures were improved tyres, measures to improve vehicle control and driver behaviour, improved interior safety of buses and improved vehicle identification. The most promising long-term measures were: collision avoidance systems, in-car information systems, intelligent speed limiters and automated highway guidance systems. Examples of low-scoring measures were: electric vehicles, improved motorcycle stability, periodic inspections, electronic road pricing, integration of car and bicycles (?), hybride vehicles, fuel cells, forwarning systems, automated car-following systems and automated people movers. These are preliminary results.

Roads and Traffic Authority of NSW
CRB 96.146.

R11 Wilingness to pay for vehicle safety features

Roy Morgan Research
515 new car purchasers were surveyed. On average they were willing to pay $486 for the non-airbag safety package (improved seat belts andseats, improved leg protection, padded steering wheel and seat belt warning device - total estimated retail $270) and $1236 for the airbag safety package (above plus driver's airbag - total estimated retail $700). 68% of low-price car purchasers were willing to pay the $700 estimated retail price of the airbag package. This increased to 80% of fleet managers (also fleet drivers).
Ryan G, Hendrie D and Mullan N
Development of a method of estimating the costs of injuries - NCAP
Proceedings of the 16th ESV
The project developed a database of injury costs by body region and injury severity, estimated the cost of injuries from crash test measurements and looked for trends by vehicle age and model grouping. "Head injury was by far the largest component of predicted injury costs".

Tingvell C, Lie A and Larsson P
Crashworthiness testing and rating and zero deaths in road traffic
Proceedings of the 15th ESV
Swedish approach to publishing retrospective (real crash) ratings and new car crash test results. The intention is to develop a series of crash tests which simulate a variety of crash situation, including roadside furniture and other vehicles. Certain injury criteria must be met in these crashes. "In a sense, the [vision zero] is also a market driven concept where it is up to the [motor] industry to increase the attractiveness of the road transport system by better protection and not let the road user take the whole responsibility to stay alive by being more restrictive by lower speed limits etc."

Duignan P, Williams S and Griffiths M
Vehicle Defects in Crashes - Indepth Vehicles Factor Study
Proceedings of the 15th ESV
Description of a project by the NSW RTA to investigate vehicle factors in crashes. teams of motor vehicle inspectors were trained in crash investigation techniques. They were notified about crashes by emergency services and attended the scene of the accident. In most cases a thorough vehicle inspection was conducted.

DETR
Current Road and Vehicle Safety Research
1998
UK Dept Environment, Transport and the Regions
Description of road safety projects being undertaken by the UK Dept. Topics include: serious injuries to child occupants, airbags, interior pillar padding, pedestrian protection, NCAP, lower back injuries, compatibility, advanced restraint systems, bus emergency exits, bus seat belts, fire in buses, motorcycle airbags, leg protectors and helmets, whiplash injuries.

SNRA
Vision Zero - a Road Safety Concept
1996
Swedish National Road Administration
Description of the vision of "no harm done - no one was hurt"

DETR
Towards Safer Roads
1997
UK Dept Environment, Transport and the Regions
Description of UK vision for road safety

NHTSA
Report to Congress on the NHTSA ITS Program
1997
NHTSA
Description of US ITS program to date and the plan for future developments. Most are for crash avoidance. An exception is the "Automated Collision Notification Program".
Paine M
National Guidelines for Assessment of Defective Vehicles
NRCT/Austroads November 1995
Guidelines for use by enforcement officers for deciding on the appropriate severity of defect notice to be issued. Contributing factors to crashes, effects of defects: impair driver's view, impair visibility of the vehicle to other road users or prevent driver from signalling intentions, impair driver's control of the vehicle, intrude into the roadspace of others or cause a nuisance (noise or emissions), impair the built-in occupant protection afforded by the vehicle in the event of a crash, increase risk of injury after a crash has occurred (rescue). Circumstance were: immediate, imminent, delayed and gradual. A matrix defines the classification of a defect based on its type and the circumstances. Serious injury risk factors for various conditions were provided: high speed limit x2, winding or hilly road x3, wet weather x2, night x2, motorcycle x10, heavy vehicle x2, dangerous goods x2.

Craigen R
Optimising the fleet experience
Wheels 92
Purchasing trends, resale, maintenance. 52% of new vehicle purchases non-private. Of there 75% business, 13% govt, 5% local govt, 4% federal govt, 3% rental.

RTA NSW
ROAD TRAFFIC ACCIDENTS IN NSW - 1999
2001

Paine M
SPEED CONTROL DEVICES FOR CARS
RTA RESEARCH REPORT 5/96
Benefit costs of speed limiters and other speed control devices: 10% of rural crashes involve speeds over 120km/h. TOP speed limiter 100% effective for these crashes, limited speedo scale 50% effective. Automatic speed limiter 50% effective for all speed related crashes. Speed alarms 25%.

Murray W
OVERCOMING BARRIERS TO FLEET SAFETY IN AUSTRALIA
ROAD SAFETY 2001, MUARC, MELBOURNE
2001

Carsten O
INTELLIGENT SPEED ADAPTION: THE BEST COLLISION AVOIDANCE SYSTEM
PROCEEDINGS OF THE 17TH ESV
B/C range from 7.9 to 15.4. 37% fatal, 20% injuries.

Thompson K
RISK-BENEFIT ANALYSIS METHODS FOR VEHICLE SAFETY DEVICES
PROCEEDINGS OF THE 17TH ESV
Not much useful detail.

Langwieder K, Fildes B, Ernvall T and
QUALITY CRITERIA FOR CRASHWORTHINESS ASSESSMENT FROM REAL-WORLD CRASHES
PROCEEDINGS OF THE 17TH ESV
2001
R27 COMPARATIVE ANALYSIS OF SEVERAL VEHICLE SAFETY RATING SYSTEMS
CAMERON M 2001
PROCEEDINGS OF THE 17TH ESV
REAL WORLD CRASHES ANALYSED
Appendix B - Summary of Safety Features
VEHICLE SAFETY FEATURES (SORTED BY BENEFIT/COST RATIO)

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
<th>INITIAL COST (NET)</th>
<th>ANNUAL MAINT.</th>
<th>NET SAVINGS</th>
<th>BENEFIT/COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_TOP</td>
<td>TOP SPEED LIMITER (SET AT 120km/h)</td>
<td>$1</td>
<td>$0</td>
<td>$10</td>
<td>67.22</td>
</tr>
<tr>
<td>HEADL_ON</td>
<td>HEADLIGHTS ON WARNING/AUTO</td>
<td>$50</td>
<td>$20</td>
<td>$55</td>
<td>7.79</td>
</tr>
<tr>
<td>DRL</td>
<td>DAYTIME RUNNING LIGHTS</td>
<td>$50</td>
<td>$2</td>
<td>$55</td>
<td>7.67</td>
</tr>
<tr>
<td>SB_BLOCK</td>
<td>SEAT BELT INTERLOCK</td>
<td>$50</td>
<td>$0</td>
<td>$23</td>
<td>3.19</td>
</tr>
<tr>
<td>SB_LL_F</td>
<td>SEAT BELT LOAD LIMITERS, FRONT</td>
<td>$20</td>
<td>$0</td>
<td>$6</td>
<td>1.95</td>
</tr>
<tr>
<td>SL_ALARM</td>
<td>SPEED ALARM</td>
<td>$50</td>
<td>$0</td>
<td>$14</td>
<td>1.92</td>
</tr>
<tr>
<td>HI_GLASS</td>
<td>HIGH TRANSMITTANCE GLAZING</td>
<td>$50</td>
<td>$0</td>
<td>$10</td>
<td>1.40</td>
</tr>
<tr>
<td>KNEE_PAD</td>
<td>KNEE BOLSTER/PADDING</td>
<td>$100</td>
<td>$0</td>
<td>$19</td>
<td>1.36</td>
</tr>
<tr>
<td>GLASS_LAM</td>
<td>LAMINATED OR SHATTER-PROOF GLAZING</td>
<td>$100</td>
<td>$0</td>
<td>$16</td>
<td>1.12</td>
</tr>
<tr>
<td>SB_WG_F</td>
<td>SEAT BELT WEBBING GRABBERS, FRONT</td>
<td>$40</td>
<td>$0</td>
<td>$6</td>
<td>1.12</td>
</tr>
<tr>
<td>SB_PT_F</td>
<td>SEAT BELT PRETENSIONER, FRONT</td>
<td>$100</td>
<td>$0</td>
<td>$16</td>
<td>1.12</td>
</tr>
<tr>
<td>SEAT_SUB</td>
<td>ANTI-SUBMARING SEAT DESIGN</td>
<td>$40</td>
<td>$0</td>
<td>$6</td>
<td>1.12</td>
</tr>
<tr>
<td>HAZ_ACT</td>
<td>HAZARD LIGHT ACTIVATE IN SEVERE CRASH</td>
<td>$50</td>
<td>$0</td>
<td>$8</td>
<td>1.11</td>
</tr>
<tr>
<td>HELMET</td>
<td>HELMETS/HEAD BANDS FOR OCCUPANTS</td>
<td>$30</td>
<td>$10</td>
<td>$4</td>
<td>0.90</td>
</tr>
<tr>
<td>SB_BUCK</td>
<td>SEAT BELT BUCKLE MOUNTED ON SEAT (FF)</td>
<td>$50</td>
<td>$0</td>
<td>$6</td>
<td>0.89</td>
</tr>
<tr>
<td>PED_IMP</td>
<td>PEDESTRIAN FRIENDLY VEHICLE FRONT</td>
<td>$500</td>
<td>$0</td>
<td>$60</td>
<td>0.85</td>
</tr>
<tr>
<td>ABS</td>
<td>ABS BRAKES</td>
<td>$400</td>
<td>$0</td>
<td>$47</td>
<td>0.83</td>
</tr>
<tr>
<td>SIDE_ABFT</td>
<td>SIDE AIRBAG - FRONT SEAT, THORAX</td>
<td>$400</td>
<td>$0</td>
<td>$46</td>
<td>0.81</td>
</tr>
<tr>
<td>AIRBAG_D</td>
<td>DRIVER AIRBAG</td>
<td>$600</td>
<td>$0</td>
<td>$67</td>
<td>0.79</td>
</tr>
<tr>
<td>BDY_COL</td>
<td>CONSPICUOUS BODY COLOUR</td>
<td>$100</td>
<td>$0</td>
<td>$10</td>
<td>0.70</td>
</tr>
<tr>
<td>LOAD_REST</td>
<td>LOAD RESTRAINT DEVICES (TETHERS)</td>
<td>$100</td>
<td>$0</td>
<td>$10</td>
<td>0.67</td>
</tr>
<tr>
<td>ISA</td>
<td>INTELLIGENT SPEED ADAPTATION</td>
<td>$800</td>
<td>$0</td>
<td>$68</td>
<td>0.60</td>
</tr>
<tr>
<td>FOOT_PROT</td>
<td>IMPROVED FOOT PROTECTION</td>
<td>$100</td>
<td>$0</td>
<td>$8</td>
<td>0.55</td>
</tr>
<tr>
<td>WIPER_SPD</td>
<td>SPEED SENSITIVE INTERMITTENT WIPERS</td>
<td>$100</td>
<td>$0</td>
<td>$7</td>
<td>0.51</td>
</tr>
<tr>
<td>WIPER_AUT</td>
<td>WIPERS AUTOMATIC</td>
<td>$100</td>
<td>$0</td>
<td>$7</td>
<td>0.51</td>
</tr>
<tr>
<td>HR_ADJ</td>
<td>ADJUSTABLE HEAD RESTRAINT</td>
<td>$100</td>
<td>$0</td>
<td>$7</td>
<td>0.50</td>
</tr>
<tr>
<td>HEAD_PAD</td>
<td>HEAD PROTECTION PADDING</td>
<td>$200</td>
<td>$0</td>
<td>$14</td>
<td>0.49</td>
</tr>
<tr>
<td>CARGO_BAR</td>
<td>CARGO BARRIER</td>
<td>$300</td>
<td>$0</td>
<td>$20</td>
<td>0.47</td>
</tr>
<tr>
<td>MIRROR AU</td>
<td>EXTERNAL MIRRORS ELECTRICALLY ADJUSTED</td>
<td>$200</td>
<td>$0</td>
<td>$13</td>
<td>0.47</td>
</tr>
<tr>
<td>AB_BONNET</td>
<td>Bonnet airbag for pedestrian protection</td>
<td>$500</td>
<td>$0</td>
<td>$32</td>
<td>0.45</td>
</tr>
<tr>
<td>AB_SMART</td>
<td>SMART AIRBAG SYSTEM</td>
<td>$500</td>
<td>$0</td>
<td>$28</td>
<td>0.39</td>
</tr>
<tr>
<td>CRASH_REC</td>
<td>CRASH RECORDER</td>
<td>$500</td>
<td>$0</td>
<td>$27</td>
<td>0.38</td>
</tr>
<tr>
<td>PHONE</td>
<td>MOBILE PHONE AVAILABLE IN EVENT OF CRASH</td>
<td>$200</td>
<td>$0</td>
<td>$11</td>
<td>0.38</td>
</tr>
<tr>
<td>SB_LL_R</td>
<td>SEAT BELT LOAD LIMITERS, REAR</td>
<td>$20</td>
<td>$0</td>
<td>$1</td>
<td>0.37</td>
</tr>
<tr>
<td>ALC_LOCK</td>
<td>ALCOHOL/DRUG INTERLOCK</td>
<td>$200</td>
<td>$0</td>
<td>$10</td>
<td>0.36</td>
</tr>
<tr>
<td>SB_HT_ADJ</td>
<td>SEAT BELT D-RING HEIGHT ADJUSTABLE/ADJUSTED</td>
<td>$100</td>
<td>$0</td>
<td>$5</td>
<td>0.33</td>
</tr>
<tr>
<td>MAYDAY</td>
<td>MAYDAY DISTRESS CALL IN SEVERE CRASH</td>
<td>$500</td>
<td>$0</td>
<td>$21</td>
<td>0.30</td>
</tr>
<tr>
<td>CRUISE</td>
<td>CRUISE CONTROL</td>
<td>$150</td>
<td>$0</td>
<td>$6</td>
<td>0.27</td>
</tr>
<tr>
<td>CODE</td>
<td>DESCRIPTION</td>
<td>INITIAL COST (NET)</td>
<td>ANNUAL MAINT.</td>
<td>NET SAVINGS</td>
<td>BENEFIT/COST</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ENG_IMMOB</td>
<td>ENGINE IMMOBILISER</td>
<td>$300</td>
<td>$0</td>
<td>$11</td>
<td>0.25</td>
</tr>
<tr>
<td>STR_ADJ</td>
<td>ADJUSTABLE STEERING COLUMN</td>
<td>$100</td>
<td>$0</td>
<td>$3</td>
<td>0.24</td>
</tr>
<tr>
<td>SEAT_ADJ</td>
<td>ADJUSTABLE DRIVERS SEAT (MULTI-FUNCTION)</td>
<td>$200</td>
<td>$0</td>
<td>$7</td>
<td>0.24</td>
</tr>
<tr>
<td>SEAT_LUM</td>
<td>ADJUSTABLE LUMBAR SUPPORT</td>
<td>$50</td>
<td>$0</td>
<td>$2</td>
<td>0.24</td>
</tr>
<tr>
<td>AUTO_TRAN</td>
<td>AUTOMATIC TRANSMISSION</td>
<td>$200</td>
<td>$0</td>
<td>$7</td>
<td>0.24</td>
</tr>
<tr>
<td>SEAT_COOL</td>
<td>COOLED/HEATED DRIVERS SEAT</td>
<td>$200</td>
<td>$0</td>
<td>$7</td>
<td>0.24</td>
</tr>
<tr>
<td>SIDE_AB_FH</td>
<td>SIDE AIRBAG - FRONT, HEAD-PROTECTING (</td>
<td>$400</td>
<td>$0</td>
<td>$12</td>
<td>0.20</td>
</tr>
<tr>
<td>HEADWAY</td>
<td>HEADWAY RADAR FOR EXCESSIVE CLOSING</td>
<td>$800</td>
<td>$0</td>
<td>$23</td>
<td>0.20</td>
</tr>
<tr>
<td>FUEL_CUT</td>
<td>FUEL AND ENGINE CUT-OFF IN SEVERE CRASH</td>
<td>$100</td>
<td>$0</td>
<td>$3</td>
<td>0.19</td>
</tr>
<tr>
<td>AIRBAG_P</td>
<td>FRONT PASSENGER AIRBAG</td>
<td>$400</td>
<td>$0</td>
<td>$11</td>
<td>0.19</td>
</tr>
<tr>
<td>SB_CR3</td>
<td>SEAT BELT, CENTRE REAR 3-POINT</td>
<td>$100</td>
<td>$0</td>
<td>$3</td>
<td>0.19</td>
</tr>
<tr>
<td>HR_RO</td>
<td>HEAD RESTRAINTS FOR REAR OUTBOARD SEATS</td>
<td>$80</td>
<td>$0</td>
<td>$2</td>
<td>0.18</td>
</tr>
<tr>
<td>POWER_STR</td>
<td>POWER STEERING</td>
<td>$300</td>
<td>$0</td>
<td>$7</td>
<td>0.16</td>
</tr>
<tr>
<td>SB_PT_R</td>
<td>SEAT BELT PRETENSIONERS, REAR</td>
<td>$100</td>
<td>$0</td>
<td>$2</td>
<td>0.15</td>
</tr>
<tr>
<td>SB_WB_R</td>
<td>SEAT BELT WEBBING GRABBERS, REAR</td>
<td>$40</td>
<td>$0</td>
<td>$1</td>
<td>0.15</td>
</tr>
<tr>
<td>HR_RA</td>
<td>HEAD RESTRAINTS FOR ALL REAR SEATS</td>
<td>$120</td>
<td>$0</td>
<td>$2</td>
<td>0.14</td>
</tr>
<tr>
<td>SIDE_AB_RT</td>
<td>SIDE AIRBAG, REAR, THORAX</td>
<td>$400</td>
<td>$0</td>
<td>$7</td>
<td>0.12</td>
</tr>
<tr>
<td>SB_INFLATE</td>
<td>INFLATABLE SEAT BELT</td>
<td>$200</td>
<td>$0</td>
<td>$3</td>
<td>0.11</td>
</tr>
<tr>
<td>IRS</td>
<td>INDEPENDENT REAR SUSPENSION</td>
<td>$300</td>
<td>$0</td>
<td>$4</td>
<td>0.09</td>
</tr>
<tr>
<td>MIRR_DIM</td>
<td>AUTO DIMMING REAR VIEW MIRROR</td>
<td>$200</td>
<td>$0</td>
<td>$2</td>
<td>0.06</td>
</tr>
<tr>
<td>CR_INT</td>
<td>CHILD SEAT INTEGRATED</td>
<td>$500</td>
<td>$0</td>
<td>$4</td>
<td>0.06</td>
</tr>
<tr>
<td>SB_HARNESS</td>
<td>HARNESS SEAT BELT FOR ADULTS (4PT OR 6PT)</td>
<td>$400</td>
<td>$0</td>
<td>$2</td>
<td>0.04</td>
</tr>
<tr>
<td>SIDE_AB_RH</td>
<td>SIDE AIRBAG, REAR, HEAD-PROTECTING</td>
<td>$400</td>
<td>$0</td>
<td>$2</td>
<td>0.04</td>
</tr>
<tr>
<td>NAV_SYS</td>
<td>NAVIGATION SYSTEM (GPS)</td>
<td>$1,500</td>
<td>$0</td>
<td>$7</td>
<td>0.03</td>
</tr>
<tr>
<td>TRACTION</td>
<td>TRACTION CONTROL</td>
<td>$700</td>
<td>$0</td>
<td>$2</td>
<td>0.02</td>
</tr>
<tr>
<td>TYRE_RF</td>
<td>RUN FLAT TYRES</td>
<td>$400</td>
<td>$0</td>
<td>$1</td>
<td>0.01</td>
</tr>
<tr>
<td>MIRR_FOG</td>
<td>ANTI FOGGING (HEATED) EXTERNAL MIRRORS</td>
<td>$200</td>
<td>$0</td>
<td>$0</td>
<td>0.01</td>
</tr>
<tr>
<td>TYRE_PRES</td>
<td>TYRE PRESSURE MONITORING</td>
<td>$400</td>
<td>$0</td>
<td>$0</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Appendix C - Details of Benefit/Cost Analyses
SAFETY FEATURE ANALYSIS

Feature Code: AIR_COND

Description: AIR CONDITIONING/CLIMATE CONTROL

Readyiness: HARVEST

Acceptance: GOOD

Net Cost (1 Off): $1,200.00

Maintenance/YR: $40.00

Cost Note: GLASS' SGUIDE AND SURVEY OF DEALERS

Crash Influence: CASES WHERE DRIVER DISCOMFORT A FACTOR. ASSUMED TO BE ONE THIRD OF FATIGURE CASES: F-17.6%, OTHERS 8.6%.

Effectiveness: ASSUMED ONE QUARTER EFFECTIVE.

<table>
<thead>
<tr>
<th>Crash Saving Analysis</th>
<th>Fatals</th>
<th>Serious</th>
<th>Minor</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>%Id of crashes Influenced</td>
<td>6%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>% Effectiveness</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>$ Saved Per Vehicle/year</td>
<td>$2.06</td>
<td>$1.76</td>
<td>$0.95</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

Discount Rate: 7.00% (OVER 10 YEARS)

Benefit/Cost Ratio: 0.00

Total Savings/YR: $5.78

Net Savings/YR: $-34.22

Main References for This Safety Feature

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>R21</td>
<td>ROAD TRAFFIC ACCIDENTS IN NSW - 1999</td>
</tr>
</tbody>
</table>

Feature Code: ALC_LOCK

Description: ALCOHOL/DRUG INTERLOCK

Readiness: START-UP

Acceptance: POOR

Net Cost (1 Off): $200.00

Maintenance/YR: $0.00

Cost Note: PROTOTYPES ONLY AT THIS STAGE. BASED ON COST OF SIMILAR GADGETS SUCH AS HEADLIGHT ALERT.

Crash Influence: 17% OF FATALS AND 5% OF OTHERS.

Effectiveness: ASSUMED 20% EFFECTIVE. THIS MAY BE OPTIMISTIC.

<table>
<thead>
<tr>
<th>Crash Saving Analysis</th>
<th>Fatals</th>
<th>Serious</th>
<th>Minor</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>%Id of crashes Influenced</td>
<td>17%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>% Effectiveness</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>$ Saved Per Vehicle/year</td>
<td>$4.83</td>
<td>$2.52</td>
<td>$1.36</td>
<td>$1.43</td>
</tr>
</tbody>
</table>

Discount Rate: 7.00% (OVER 10 YEARS)

Benefit/Cost Ratio: 0.36

Total Savings/YR: $10.14

Net Savings/YR: $10.14

Main References for This Safety Feature

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>R04</td>
<td>Reducing traffic injuries through vehicle safety improvements</td>
</tr>
<tr>
<td>R21</td>
<td>ROAD TRAFFIC ACCIDENTS IN NSW - 1999</td>
</tr>
</tbody>
</table>

* "Hi" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>DESCRIPTION</th>
<th>CATEGORY</th>
<th>READINESS</th>
<th>ACCEPTANCE</th>
<th>MAINTENANCE/YR:</th>
<th>COST NOTE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO_TRANS</td>
<td>AUTOMATIC TRANSMISSION</td>
<td>DRIVERS CONTROL OF VEHICLE</td>
<td>HARVEST</td>
<td>GOOD</td>
<td>$0.00</td>
<td>GLASS'S GUIDE.</td>
</tr>
</tbody>
</table>

| NET COST (1 OFF) | $200.00 |

Discount Rate: 7.00% (OVER 10 YEARS)

Benefit/Cost Ratio: 0.24

Readiness:
- Harvest: Acceptance
- Good

Crash Influence:
- Cases where changing manual gears contributed to accident. Likely to be less than 1%.

Effectiveness:
- Should eliminate all cases. Cost assumed to be extra on manual cost.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

% of crashes influenced: 1%

% effectiveness: 100%

$ saved per vehicle/year: $1.42

Total savings/yr: $6.73

Discount Rate: 7.00% (OVER 10 YEARS)

Benefit/Cost Ratio: 0.24

Main References for this safety feature:
- Reducing traffic injuries through vehicle safety improvements

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>DESCRIPTION</th>
<th>CATEGORY</th>
<th>READINESS</th>
<th>ACCEPTANCE</th>
<th>MAINTENANCE/YR:</th>
<th>COST NOTE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRUISE</td>
<td>CRUISE CONTROL</td>
<td>DRIVERS CONTROL OF VEHICLE</td>
<td>HARVEST</td>
<td>GOOD</td>
<td>$0.00</td>
<td>SURVEY OF DEALLERS AND GLASS'S GUIDE</td>
</tr>
</tbody>
</table>

| NET COST (1 OFF) | $150.00 |

Discount Rate: 7.00% (OVER 10 YEARS)

Benefit/Cost Ratio: 0.27

Main References for this safety feature:
- ROAD TRAFFIC ACCIDENTS IN NSW - 1999
- SPEED CONTROL DEVICES FOR CARS

* "Hi" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE: ISA

DESCRIPTION: INTELLIGENT SPEED ADAPTION
READYNESS: START-UP
ACCEPTANCE: POOR
NET COST (1 OFF): $800.00
MAINTENANCE/YR: $0.00

COST NOTE: BASED MAINLY ON A COMPREHENSIVE REPORT BY UNI OF LEEDS. COST SUBSTANTIALLY LESS IF PIGGY-BACKED ON A NAVIGATION SYSTEM.
CRASH INFLUENCE: SPEED-RELATED CRASHES 40% OF FATALS AND 15% OF OTHERS (R21).

EFFECTIVENESS: POTENTIAL FOR HIGHLY EFFECTIVE ADVANCED SYSTEM. ASSUME BASIC SYSTEM RESULTS IN 50% REDUCTION.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>40%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$28.40</td>
<td>$18.90</td>
<td>$10.20</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 0.60

MAIN REFERENCES FOR THIS SAFETY FEATURE
- **P19:** NSW Heavy Vehicle Crash Study - Final Technical Report.
- **R21:** ROAD TRAFFIC ACCIDENTS IN NSW - 1999
- **R22:** SPEED CONTROL DEVICES FOR CARS
- **R24:** INTELLIGENT SPEED ADAPTION: THE BEST COLLISION AVAODANCE SYSTEM

FEATURE CODE: NAV_SYS

DESCRIPTION: NAVIGATION SYSTEM (GPS)
READYNESS: TAKE-OFF
ACCEPTANCE: MODERATE
NET COST (1 OFF): $1,500.00
MAINTENANCE/YR: $0.00

COST NOTE: DEALER SURVEY.
CRASH INFLUENCE: ASSUMING A VOICE ACTIVATED SYSTEM IS USED SO THAT RISK OF ACCIDENT DOES NOT INCREASE, THEN BENEFITS ARE FROM GREATER AWARENESS OF ROAD CONDITIONS. FEWER ACCIDENTS DUE TO UNKNOWN ROAD CONDITIONS (WHEN TO TURN ETC). PERHAPS 1% OF ACCIDENTS.
EFFECTIVENESS: GOOD SYSTEM HAS POTENTIAL TO BE 100% EFFECTIVE IN CASE OF ACCIDENTS CAUSED BY UNKNOWN ROAD CONDITIONS.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$1.42</td>
<td>$2.52</td>
<td>$1.36</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 0.03

MAIN REFERENCES FOR THIS SAFETY FEATURE
- **R09:** ESV Government Reports - The Netherlands

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>ACCEPTANCE</th>
<th>NET COST (1 OFF)</th>
<th>MAINTENANCE/YR</th>
<th>COST NOTE</th>
<th>CRASH INFLUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEAT_ADJ</td>
<td>DRIVERS CONTROL OF VEHICLE</td>
<td>ADJUSTABLE DRIVERS SEAT (MULTI-FUNCTION)</td>
<td>HARVEST</td>
<td>MODERATE</td>
<td>$200.00</td>
<td>$0.00</td>
<td>NOMINAL COST BASED ON 33% TYPICAL COST OF ENTIRE SEAT (~$600).</td>
<td>ACCIDENTS WHERE DISCOMFORT OR FATIGUE A FACTOR. SAY 5% OF ALL.</td>
</tr>
</tbody>
</table>

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$1.42</td>
<td>$2.52</td>
<td>$1.36</td>
<td>$1.43</td>
</tr>
</tbody>
</table>

BENEFIT/COST RATIO: 0.24 **HI**: 0.24

TOTAL SAVINGS/YR: $6.73

MAIN REFERENCES FOR THIS SAFETY FEATURE

CODE: R25

CODE	**TITLE**
R25 | RISK-BENEFIT ANALYSIS METHODS FOR VEHICLE SAFETY DEVICES

Note: **HI** benefit cost value assumes above average exposure, where applicable

FEATURE CODE

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>ACCEPTANCE</th>
<th>NET COST (1 OFF)</th>
<th>MAINTENANCE/YR</th>
<th>COST NOTE</th>
<th>CRASH INFLUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEAT_COOL</td>
<td>DRIVERS CONTROL OF VEHICLE</td>
<td>COOLED/HEATED DRIVERS SEAT</td>
<td>TAKE-OFF</td>
<td>MODERATE</td>
<td>$200.00</td>
<td>$0.00</td>
<td>PROTOTYPES ONLY AT THIS STAGE. ASSUMES AIR CONDITIONER ALREADY FITTED.</td>
<td>ACCIDENTS WHERE DISCOMFORT OR FATIGUE A FACTOR. SAY 5% OF ALL.</td>
</tr>
</tbody>
</table>

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$1.42</td>
<td>$2.52</td>
<td>$1.36</td>
<td>$1.43</td>
</tr>
</tbody>
</table>

BENEFIT/COST RATIO: 0.24 **HI**: 0.24

TOTAL SAVINGS/YR: $6.73

MAIN REFERENCES FOR THIS SAFETY FEATURE

CODE: R25

CODE	**TITLE**
R25 | RISK-BENEFIT ANALYSIS METHODS FOR VEHICLE SAFETY DEVICES
SAFETY FEATURE ANALYSIS

FEATURE CODE
SEAT_LUM

CATEGORY
DRIVERS CONTROL OF VEHICLE

DESCRIPTION
ADJUSTABLE LUMBAR SUPPORT

READINESS
HARVEST

ACCEPTANCE
MODERATE

NET COST (1 OFF)
$50.00

MAINTENANCE/YR:
$0.00

COST NOTE:
NOMINAL COST ASSUMES SYSTEM CAN BE READILY INCORPORATED ON THE PRODUCTION LINE.

CRASH INFLUENCE:
ACCIDENTS WHERE DISCOMFORT OR FATIGUE A FACTOR. SAY 5% OF ALL.

EFFECTIVENESS:
NO DATA. ASSUME 5% EFFECTIVENESS.

<table>
<thead>
<tr>
<th>CRASH INFLUENCE</th>
<th>% OF CRASHES INFLUENCED</th>
<th>% EFFECTIVENESS</th>
<th>$ SAVED PER VEHICLE/YEAR</th>
<th>CRASH COST/VEHICLE/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATALS</td>
<td>5%</td>
<td>5%</td>
<td>$0.36</td>
<td>$142.00</td>
</tr>
<tr>
<td>SERIOUS</td>
<td>5%</td>
<td>5%</td>
<td>$0.63</td>
<td>$252.00</td>
</tr>
<tr>
<td>MINOR</td>
<td>5%</td>
<td>5%</td>
<td>$0.34</td>
<td>$136.00</td>
</tr>
<tr>
<td>PROPERTY</td>
<td>5%</td>
<td>5%</td>
<td>$0.36</td>
<td>$143.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE:
7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO:
0.24

TOTAL SAVINGS/YR:
$1.68

NET SAVINGS/YR:
$1.68

COST NOTE:
BASED ON RTA SPEED CONTROL REPORT OF 1996. AFTERMARKET COST ABOUT $100. ASSUMED THAT OE COST ABOUT HALF OF THIS.

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R25</td>
<td>RISK-BENEFIT ANALYSIS METHODS FOR VEHICLE SAFETY DEVICES</td>
</tr>
</tbody>
</table>

FEATURE CODE
SL_ALARM

CATEGORY
DRIVERS CONTROL OF VEHICLE

DESCRIPTION
SPEED ALARM

READINESS
TAKE-OFF

ACCEPTANCE
MODERATE

NET COST (1 OFF)
$50.00

MAINTENANCE/YR:
$0.00

COST NOTE:
BASED ON RTA SPEED CONTROL REPORT OF 1996. AFTERMARKET COST ABOUT $100. ASSUMED THAT OE COST ABOUT HALF OF THIS.

CRASH INFLUENCE:
SPEED RELATED CRASHES 40% OF FATALS AND 15% OF OTHERS

EFFECTIVENESS:
LOW EFFECTIVENESS DUE TO NEED TO MANUALLY SET SPEED. ASSUME 10%.

<table>
<thead>
<tr>
<th>CRASH INFLUENCE</th>
<th>% OF CRASHES INFLUENCED</th>
<th>% EFFECTIVENESS</th>
<th>$ SAVED PER VEHICLE/YEAR</th>
<th>CRASH COST/VEHICLE/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATALS</td>
<td>40%</td>
<td>10%</td>
<td>$5.68</td>
<td>$142.00</td>
</tr>
<tr>
<td>SERIOUS</td>
<td>15%</td>
<td>10%</td>
<td>$3.78</td>
<td>$252.00</td>
</tr>
<tr>
<td>MINOR</td>
<td>15%</td>
<td>10%</td>
<td>$2.04</td>
<td>$136.00</td>
</tr>
<tr>
<td>PROPERTY</td>
<td>15%</td>
<td>10%</td>
<td>$2.15</td>
<td>$143.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE:
7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO:
1.92

TOTAL SAVINGS/YR:
$13.65

NET SAVINGS/YR:
$13.65

COST NOTE:
BASED ON RTA SPEED CONTROL REPORT OF 1996. AFTERMARKET COST ABOUT $100. ASSUMED THAT OE COST ABOUT HALF OF THIS.

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R21</td>
<td>ROAD TRAFFIC ACCIDENTS IN NSW - 1999</td>
</tr>
<tr>
<td>R22</td>
<td>SPEED CONTROL DEVICES FOR CARS</td>
</tr>
<tr>
<td>R24</td>
<td>INTELLIGENT SPEED ADAPTATION: THE BEST COLLISION AVOIDANCE SYSTEM</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable"
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>MAINTENANCE/YR:</th>
<th>NET COST (1 OFF)</th>
<th>COST NOTE</th>
<th>CRASH INFLUENCE</th>
<th>EFFECTIVENESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_TOP</td>
<td>DRIVERS CONTROL OF VEHICLE</td>
<td>TOP SPEED LIMITER (SET AT 120km/h)</td>
<td>TAKE-OFF</td>
<td>$0.00</td>
<td>$1.00</td>
<td>ASSUMES THAT ENGINE MANAGEMENT CHIP IS RECODED TO LOWER THE MAXIMUM SPEED (MOST ARE SET AT 250km/h+). IN THE LONG TERM THIS WILL BE NIL COST</td>
<td>PROPORTION OF CRASHES ESTIMATED TO INVOLVE SPEEDS IN EXCESS OF 120km/h. ESTIMATED 3% OF ALL FATALS AND 1% OF OTHERS.</td>
<td>HIGHLY EFFECTIVE FOR THESE CRASHES. ASSUME 100%.</td>
</tr>
</tbody>
</table>

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>3%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$4.26</td>
<td>$2.52</td>
<td>$1.36</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 67.22 HI*: 67.22
TOTAL SAVINGS/YR: $9.57
NET SAVINGS/YR: $9.57

MAIN REFERENCES FOR THIS SAFETY FEATURE
Code: R22
Title: SPEED CONTROL DEVICES FOR CARS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>MAINTENANCE/YR:</th>
<th>NET COST (1 OFF)</th>
<th>COST NOTE</th>
<th>CRASH INFLUENCE</th>
<th>EFFECTIVENESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STR_ADJ</td>
<td>DRIVERS CONTROL OF VEHICLE</td>
<td>ADJUSTABLE STEERING COLUMN</td>
<td>HARVEST</td>
<td>$0.00</td>
<td>$100.00</td>
<td>NOMINAL COST BASED ON PRODUCTION LINE CHANGE. NEGLIGIBLE IN LONG TERM.</td>
<td>LOSS OF CONTROL CRASHES. SMALL NUMBER OF FATIGURE CRASHES. ASSUMED 5% OF ALL.</td>
<td>MODERATE. ASSUME 10%</td>
</tr>
</tbody>
</table>

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.71</td>
<td>$1.26</td>
<td>$0.68</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 0.24 HI*: 0.24
TOTAL SAVINGS/YR: $3.37
NET SAVINGS/YR: $3.37

MAIN REFERENCES FOR THIS SAFETY FEATURE
Code: L90
Title: STEERING COLUMN MOVEMENT IN SEVERE FRONTAL CRASHES - EFFECT ON AI

* "HI" benefit cost value assumes above average exposure, where applicable

C6
SAFETY FEATURE ANALYSIS

Feature Code: WIPER_AUTO
Category: Drivers Control of Vehicle

Description: Wipers Automatic
Readiness: Take-Off **Acceptance:** Moderate

<table>
<thead>
<tr>
<th>Feature Code</th>
<th>Net Cost (1 Off)</th>
<th>Maintenance/YR</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIPER_AUTO</td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

Cost Note: Based on aftermarket kits such as headlight alerts.

Crash Influence: Wet weather accidents. 18% of fatalities, 21% of injury, 26% of property

Effectiveness: Only where driver's fail to operate wipers. Perhaps 5%.

Crash Saving Analysis

Fatals

<table>
<thead>
<tr>
<th>% of Crashes Influenced</th>
<th>$ Saved Per Vehicle/Year</th>
<th>Total Savings/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>18%</td>
<td>$1.28</td>
<td>$252.00</td>
</tr>
</tbody>
</table>

Serious

<table>
<thead>
<tr>
<th>% of Crashes Influenced</th>
<th>$ Saved Per Vehicle/Year</th>
<th>Total Savings/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>21%</td>
<td>$2.65</td>
<td>$136.00</td>
</tr>
</tbody>
</table>

Minor

<table>
<thead>
<tr>
<th>% of Crashes Influenced</th>
<th>$ Saved Per Vehicle/Year</th>
<th>Total Savings/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>21%</td>
<td>$1.43</td>
<td>$143.00</td>
</tr>
</tbody>
</table>

Property

<table>
<thead>
<tr>
<th>% of Crashes Influenced</th>
<th>$ Saved Per Vehicle/Year</th>
<th>Total Savings/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>26%</td>
<td>$1.86</td>
<td>$7.21</td>
</tr>
</tbody>
</table>

Discount Rate: 7.00% (Over 10 Years)

Benefit/Cost Ratio: 0.51 **Hi:** 0.51

Main References for This Safety Feature

- **Code:** R25 **Title:** Risk-Benefit Analysis Methods for Vehicle Safety Devices

Feature Code: ABS
Category: Handling and Braking

Description: ABS Brakes
Readiness: Harvest **Acceptance:** Good

<table>
<thead>
<tr>
<th>Feature Code</th>
<th>Net Cost (1 Off)</th>
<th>Maintenance/YR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>$400.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

Cost Note: Glass's Guide Typical Value.

Crash Influence: Assume 70% of all accidents involve emergency braking. Forst studies of pedestrian accidents found that in half the cases there was no pre-crash avoidance. Less with other types of accidents.

Effectiveness: ABS only effective for a small proportion where loss of control occurred or driver was reluctant to brake heavily for fear of skidding. Assumed 10% of all emergency braking cases.

Crash Saving Analysis

Fatals

<table>
<thead>
<tr>
<th>% of Crashes Influenced</th>
<th>$ Saved Per Vehicle/Year</th>
<th>Total Savings/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>$9.94</td>
<td>$252.00</td>
</tr>
</tbody>
</table>

Serious

<table>
<thead>
<tr>
<th>% of Crashes Influenced</th>
<th>$ Saved Per Vehicle/Year</th>
<th>Total Savings/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>$17.64</td>
<td>$136.00</td>
</tr>
</tbody>
</table>

Minor

<table>
<thead>
<tr>
<th>% of Crashes Influenced</th>
<th>$ Saved Per Vehicle/Year</th>
<th>Total Savings/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>$9.52</td>
<td>$143.00</td>
</tr>
</tbody>
</table>

Property

<table>
<thead>
<tr>
<th>% of Crashes Influenced</th>
<th>$ Saved Per Vehicle/Year</th>
<th>Total Savings/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>$10.01</td>
<td>$47.11</td>
</tr>
</tbody>
</table>

Discount Rate: 7.00% (Over 10 Years)

Benefit/Cost Ratio: 0.83 **Hi:** 0.83

Main References for This Safety Feature

- **Code:** N15 **Title:** Pedestrian safety
- **Code:** R04 **Title:** Reducing traffic injuries through vehicle safety improvements

* "Hi" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>MAINTENANCE/YR:</th>
<th>COST NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADWAY</td>
<td>HANDLING AND BRAKING</td>
<td>HEADWAY RADAR FOR EXCESSIVE CLOSING SPEEDS</td>
<td>START-UP</td>
<td>$0.00</td>
<td>PROTOTYPES ONLY AT THIS STAGE. BASED ON SIMILAR ELECTRONIC SYSTEMS SUCH AS CD PLAYER.</td>
</tr>
</tbody>
</table>

CRASH INFLUENCE:
- MOSTLY VEHICLES RUNNING INTO THE REAR OF VEHICLE IN FRONT ABOUT 20% OF ALL CRASHES

EFFECTIVENESS:
- US DATA SUGGESTS 25% OF ALL ACCIDENTS INVOLVE DISTRACTION. ASSUME HEADWAY ALERT WOULD INFLUENCE ABOUT ONE THIRD OF THESE - SAY 10% OVERALL.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$214.00</td>
<td>$341.00</td>
<td>$194.00</td>
<td>$376.00</td>
<td></td>
</tr>
</tbody>
</table>

% OF CRASHES INFLUENCED:
- 20%
- 20%
- 20%
- 20%

% EFFECTIVENESS:
- 10%
- 10%
- 10%
- 10%

$ SAVED PER VEHICLE/YEAR:
- $4.28
- $6.82
- $3.88
- $7.52

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

TOTAL SAVINGS/YR: $22.50

BENEFIT/COST RATIO: 0.20

HI*: 0.20

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>MAINTENANCE/YR:</th>
<th>COST NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRS</td>
<td>HANDLING AND BRAKING</td>
<td>INDEPENDENT REAR SUSPENSION</td>
<td>HARVEST</td>
<td>$0.00</td>
<td>GLASS'S GUIDE</td>
</tr>
</tbody>
</table>

CRASH INFLUENCE:
- ASSUME 30% OF ALL ACCIDENTS INVOLVE SWERVING OR OTHER DIRECTIONAL CONTROL.

EFFECTIVENESS:
- LOW EFFECTIVENESS (ASSUME 2%) UNLESS COMBINED WITH BETTER TYRES.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

% OF CRASHES INFLUENCED:
- 30%
- 30%
- 30%
- 30%

% EFFECTIVENESS:
- 2%
- 2%
- 2%
- 2%

$ SAVED PER VEHICLE/YEAR:
- $0.85
- $1.51
- $0.82
- $0.86

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

TOTAL SAVINGS/YR: $4.04

BENEFIT/COST RATIO: 0.09

HI*: 0.09

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K67</td>
<td>HOW SON TO BRAKE AND HOW HARD TO BRAKE</td>
</tr>
<tr>
<td>K68</td>
<td>DISTANCE BEHAVIOUR ON MOTORWAYS WITH REGARD TO ACTIVE SAFETY</td>
</tr>
<tr>
<td>K69</td>
<td>NHTSA DRIVER DISTRACTION RESEARCH</td>
</tr>
<tr>
<td>L64</td>
<td>Neck and spinal injuries: injury outcome and crash characteristics in Aust.</td>
</tr>
<tr>
<td>R21</td>
<td>ROAD TRAFFIC ACCIDENTS IN NSW - 1999</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

Feature: Power Steering

Category: Handling and Braking
Code: POWER_STR
Description: Power Steering
Readiness: Saturation
Acceptance: Good
Net Cost (1 Off): $300.00
Maintenance/Year: $0.00

Cost Note: Glass's Guide.

Discount Rate: 7.00% (Over 10 Years)
Benefit/Cost Ratio: 0.16

Crash Influence: Some accidents involving loss of control and a small proportion of fatigue accidents. Assume around 20% of all accidents.
Effectiveness: Low effectiveness. Assume 5%.

Crash Saving Analysis

<table>
<thead>
<tr>
<th></th>
<th>Fatails</th>
<th>Serious</th>
<th>Minor</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash Cost/vehicle/Year</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% of Crashes Influenced</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>$ Saved Per Vehicle/Year</td>
<td>$1.42</td>
<td>$2.52</td>
<td>$1.36</td>
<td>$1.43</td>
</tr>
</tbody>
</table>

Total Savings/Year: $6.73
Net Savings/Year: $6.73

Main References for this Safety Feature:
Code: R25
Title: Risk-Benefit Analysis Methods for Vehicle Safety Devices

Feature: Traction Control

Category: Handling and Braking
Code: TRACTION
Description: Traction Control
Readiness: Take-Off
Acceptance: Good
Net Cost (1 Off): $700.00
Maintenance/Year: $0.00

Cost Note: Survey of Dealers.

Discount Rate: 7.00% (Over 10 Years)
Benefit/Cost Ratio: 0.02

Crash Influence: Loss of control accidents involving excessive acceleration. 5% of all.
Effectiveness: Low due to extra risk taking. Say 5%.

Crash Saving Analysis

<table>
<thead>
<tr>
<th></th>
<th>Fatails</th>
<th>Serious</th>
<th>Minor</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash Cost/vehicle/Year</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% of Crashes Influenced</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>$ Saved Per Vehicle/Year</td>
<td>$0.36</td>
<td>$0.63</td>
<td>$0.34</td>
<td>$0.36</td>
</tr>
</tbody>
</table>

Total Savings/Year: $1.68
Net Savings/Year: $1.68

Main References for this Safety Feature:
Code: R25
Title: Risk-Benefit Analysis Methods for Vehicle Safety Devices

* "HI" benefit cost value assumes above average exposure, where applicable.
SAFETY FEATURE ANALYSIS

TYRE_PRESS
DESCRIPTION
- **Tyre Pressure Monitoring**

NET COST (1 OFF)
- **$400.00**

MAINTENANCE/YR:
- **$0.00**

CRASH INFLUENCE:
- Accidents involving tyre failure, 0.5%

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>Category</th>
<th>1%</th>
<th>5%</th>
<th>1%</th>
<th>5%</th>
<th>1%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatals</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious</td>
<td>$0.04</td>
<td>$0.06</td>
<td>$0.03</td>
<td>$0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL SAVINGS/YR
- **$0.17**

NET SAVINGS/YR
- **$0.17**

MAIN REFERENCES FOR THIS SAFETY FEATURE
- **R25**
- Risk-Benefit Analysis Methods for Vehicle Safety Devices

TYRE_RF
DESCRIPTION
- **Run Flat Tyres**

NET COST (1 OFF)
- **$400.00**

MAINTENANCE/YR:
- **$0.00**

CRASH INFLUENCE:
- Accidents due to tyre failure, 0.5%

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>Category</th>
<th>1%</th>
<th>5%</th>
<th>1%</th>
<th>5%</th>
<th>1%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatals</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious</td>
<td>$0.14</td>
<td>$0.25</td>
<td>$0.14</td>
<td>$0.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL SAVINGS/YR
- **$0.67**

NET SAVINGS/YR
- **$0.67**

MAIN REFERENCES FOR THIS SAFETY FEATURE
- **R25**
- Risk-Benefit Analysis Methods for Vehicle Safety Devices

* "HI" benefit cost value assumes above average exposure, where applicable

C10
SAFETY FEATURE ANALYSIS

DRV_LIGHTS

Description: Driving Lights

- **Net Cost (1 Off):** $100.00
- **Maintenance/Yr:** $5.00

Cost Notes:
Retail price of basic systems. Maintenance cost assumes globe failure every 3 years.

Crash Influence:
Nighttime (36% of fatalities, 21% of others) where normal headlights did not provide sufficient lighting (perhaps 10%): 3.6% fatalities, 2.1% of others.

Effectiveness:
Perhaps one quarter could have been prevented by better lighting.

FOG_LAMPS

Description: Fog Lamps

- **Net Cost (1 Off):** $100.00
- **Maintenance/Yr:** $5.00

Cost Notes:
Retail price of basic systems. Maintenance cost assumes globe failure every 3 years.

Crash Influence:
Accidents occurring in fog. Probably less than 1% of all in Australia (cf. 20% on wet roads).

Effectiveness:
Perhaps one quarter could be prevented.
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>MAINTENANCE/YR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI_GLASS</td>
<td>HAZARD RECOGNITION BY DRIVER</td>
<td>HIGH TRANSMITTANCE GLAZING</td>
<td>START-UP</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

| NET COST (1 OFF) | $50.00 |

COST NOTE: COULD BE NIL COST IN THE LONG TERM BUT ASSUME THE IMPROVED GLAZING TECHNOLOGY IS NEEDED TO CUT HEAT TRANSMISSION WHILE LETTING VISIBLE LIGHT IN.

CRASH INFLUENCE: NIGHT, DUSK AND DAWN 58% OF FATALS AND 47% OF OTHERS

EFFECTIVENESS: PERHAPS 3%, BASED ON US FIELD OF VIEW RESEARCH. RAMIFICATIONS FOR TINTED WINDOWS.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>58%</td>
<td>47%</td>
<td>47%</td>
<td>47%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$2.47</td>
<td>$3.55</td>
<td>$1.92</td>
<td>$2.02</td>
</tr>
</tbody>
</table>

DISCOUNT RATE 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 1.40

TOTAL SAVINGS/YR $9.96

NET SAVINGS/YR $9.96

(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

- CODE: R21
- TITLE: ROAD TRAFFIC ACCIDENTS IN NSW - 1999

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>MAINTENANCE/YR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIRR_DIM</td>
<td>HAZARD RECOGNITION BY DRIVER</td>
<td>AUTO DIMMING REAR VIEW MIRROR</td>
<td>TAKE-OFF</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

| NET COST (1 OFF) | $200.00 |

COST NOTE: NOMINAL COST BASED ON SIMILAR ELECTRONIC DEVICES.

CRASH INFLUENCE: NIGHTTIME (36% FATALS, 21% OF OTHERS)

EFFECTIVENESS: WHERE GLARE FROM FOLLOWING VEHICLE'S HEADLIGHTS CONTRIBUTED TO ACCIDENT. NO DATA BUT ASSUME 1%.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>36%</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.51</td>
<td>$0.53</td>
<td>$0.29</td>
<td>$0.30</td>
</tr>
</tbody>
</table>

DISCOUNT RATE 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.06

TOTAL SAVINGS/YR $1.63

NET SAVINGS/YR $1.63

(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

- CODE: R21
- TITLE: ROAD TRAFFIC ACCIDENTS IN NSW - 1999

* "HI" benefit cost value assumes above average exposure, where applicable*
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>ACCEPTANCE</th>
<th>COST NOTE</th>
<th>CRASH INFLUENCE</th>
<th>EFFECTIVENESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIRR_FOG</td>
<td>HAZARD RECOGNITION BY DRIVER</td>
<td>ANTI FOGGING (HEATED) EXTERNAL MIRRORS</td>
<td>TAKE-OFF</td>
<td>MODERATE</td>
<td>NOMINAL COST BASED ON SIMILAR ELECTRONIC EQUIP.</td>
<td>COLD, HUMID CONDITIONS - MOSTLY AT NIGHT. VERY DEPENDENT ON GEOGRAPHIC LOCATION. PERHAPS 1% OF ACCIDENTS ON AVERAGE</td>
<td>CASES WHERE POOR VIEW IN EXTERNAL MIRRORS CONTRIBUTED. PERHAPS 5% EFFECTIVE.</td>
</tr>
</tbody>
</table>

| NET COST (1 OFF) | MAINTENANCE/YR | |
|------------------|----------------|
| $200.00 | $0.00 |

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.07</td>
<td>$0.13</td>
<td>$0.07</td>
<td>$0.07</td>
</tr>
</tbody>
</table>

DISCOUNT RATE | 7.00% (OVER 10 YEARS) |
| BENEFIT/COST RATIO: | 0.01 HI*: 0.01 |

TOTAL SAVINGS/YR | $0.34 |
| NET SAVINGS/YR | $0.34 |

NET SAVINGS/YR (Total savings - Maintenance) |

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R25</td>
<td>RISK-BENEFIT ANALYSIS METHODS FOR VEHICLE SAFETY DEVICES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>ACCEPTANCE</th>
<th>COST NOTE</th>
<th>CRASH INFLUENCE</th>
<th>EFFECTIVENESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIRROR_AUTO</td>
<td>HAZARD RECOGNITION BY DRIVER</td>
<td>EXTERNAL MIRRORS ELECTRICALLY ADJUSTABLE</td>
<td>HARVEST</td>
<td>MODERATE</td>
<td>ACCIDENTS WHERE DRIVER DID NOT RECOGNISE HAZARD TO REAR. PERHAPS 20% OF ALL ACCIDENTS.</td>
<td>CASES WHERE MIRROR WAS NOT CORRECTLY ADJUSTED FOR DRIVER (20%?) TIMES CHANCES THAT DRIVER WOULD USE THE ELECTRIC ADJUSTMENT CORRECTLY (50%) = 10%</td>
<td></td>
</tr>
</tbody>
</table>

| NET COST (1 OFF) | MAINTENANCE/YR | |
|------------------|----------------|
| $200.00 | $0.00 |

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$2.84</td>
<td>$5.04</td>
<td>$2.72</td>
<td>$2.86</td>
</tr>
</tbody>
</table>

DISCOUNT RATE | 7.00% (OVER 10 YEARS) |
| BENEFIT/COST RATIO: | 0.47 HI*: 0.47 |

TOTAL SAVINGS/YR | $13.46 |
| NET SAVINGS/YR | $13.46 |

NET SAVINGS/YR (Total savings - Maintenance) |

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R04</td>
<td>Reducing traffic injuries through vehicle safety improvements</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE: WIPER_SPD
CATEGORY: HAZARD RECOGNITION BY DRIVER

DESCRIPTION: SPEED SENSITIVE INTERMITTENT WIPERS

READINESS: TAKE-OFF

ACCEPTANCE: MODERATE

NET COST (1 OFF): $100.00

MAINTENANCE/YR: $0.00

COST NOTE: NOMINAL COST BASED ON COST OF OTHER ELECTRONIC GADGETS. MANY LUXURY VEHICLES NOW HAVE THIS FEATURE AS STANDARD.

CRASH INFLUENCE: WET WEATHER ACCIDENTS. 18% OF FATALS, 21% OF INJURY, 26% OF PROPERTY

EFFECTIVENESS: LIGHT RAIN/SPRAY WHERE FIXED PERIOD NOT ADEQUATE. PERHAPS 5% OF CASES.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

% OF CRASHES INFLUENCED	18%
% EFFECTIVENESS	5%
$ SAVED PER VEHICLE/YEAR	$1.28

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.51

HI: 0.51

TOTAL SAVINGS/YR: $7.21

NET SAVINGS/YR: $7.21 (Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE
- CODE: R25
- TITLE: RISK-BENEFIT ANALYSIS METHODS FOR VEHICLE SAFETY DEVICES

FEATURE CODE: BDY_COL
CATEGORY: HAZARD RECOGNITION BY OTHERS

DESCRIPTION: CONSPICUOUS BODY COLOUR

READINESS: HARVEST

ACCEPTANCE: MODERATE

NET COST (1 OFF): $100.00

MAINTENANCE/YR: $0.00

COST NOTE: NOMINAL COST. COULD BE NIL COST FOR SOME COLOURS. FOR COMPARISON "METALLIC" PAINT TYPICALLY COSTS ABOUT $200-$300.

CRASH INFLUENCE: ACCIDENTS WHERE OTHER DRIVER DID NOT SEE SUBJECT VEHICLE. ASSUMED DAWN AND DUSK (20% OF ALL ACCIDENTS). TWO VEHICLE ACCIDENTS (70% OF FATALS, 75% OF OTHERS) = 14% FATALS AND 15% OF OTHERS.

EFFECTIVENESS: BODY COLOUR WILL ONLY CHANGE OUTCOME WHERE AMBIENT LIGHT AND BACKGROUND ARE MORE FAVORABLE TO THE CHOSEN COLOUR. PERHAPS 10% OF ALL CASES. TOKEN COST OF ALTERNATIVE BODY COLOUR MAKES B/C CALC DUBIOUS.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

% OF CRASHES INFLUENCED	14%
% EFFECTIVENESS	10%
$ SAVED PER VEHICLE/YEAR	$1.99

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.70

HI: 0.70

TOTAL SAVINGS/YR: $9.95

NET SAVINGS/YR: $9.95 (Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE
- CODE: R09
 - TITLE: ESV Government Reports - The Netherlands
- CODE: R21
 - TITLE: ROAD TRAFFIC ACCIDENTS IN NSW - 1999

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>ACCEPTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRL</td>
<td>HAZARD RECOGNITION BY OTHERS</td>
<td>DAYTIME RUNNING LIGHTS</td>
<td>HARVEST</td>
<td>MODERATE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NET COST (1 OFF)</th>
<th>$50.00</th>
<th>MAINTENANCE/YR:</th>
<th>$2.00</th>
</tr>
</thead>
</table>

COST NOTE: OE COSTS AND ANNUAL MAINTENANCE BASED ON DUTCH AND CANADIAN ESTIMATES. AFTERMARKET COST ABOUT $200 BASED ON DISCUSSIONS WITH AUTO-

CRASH INFLUENCE: NON-NIGHTTIME (64% OF FATALS, 79% OF OTHERS) TWO VEHICLE ACCIDENTS (70% OF FATALS, 75% OF OTHERS) = 45% FATALS AND 59% OF OTHERS.

EFFECTIVENESS: MORE EFFECTIVE AT DAWN AND DUSK (AROUND ONE QUARTER OF NON-NIGHT ACCIDENTS). RESEARCH ESTIMATES AVERAGE 15% EFFECTIVE.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

- **% OF CRASHES INFLUENCED:** 45%
- **% EFFECTIVENESS:** 15%
- **$ SAVED PER VEHICLE/YEAR:** $9.59

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 7.67

TOTAL SAVINGS/YR: $56.58

NET SAVINGS/YR: $54.58

(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

- K58: DAYTIME RUNNING LIGHTS - A NORTH AMERICAN SUCCESS STORY
- R21: ROAD TRAFFIC ACCIDENTS IN NSW - 1999

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>ACCEPTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADL_ON</td>
<td>HAZARD RECOGNITION BY OTHERS</td>
<td>HEADLIGHTS ON WARNING/AUTO</td>
<td>HARVEST</td>
<td>GOOD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NET COST (1 OFF)</th>
<th>$50.00</th>
<th>MAINTENANCE/YR:</th>
<th>$20.00</th>
</tr>
</thead>
</table>

COST NOTE: OE COSTS AND ANNUAL MAINTENANCE BASED ON DUTCH AND CANADIAN ESTIMATES. AFTERMARKET COST ABOUT $150 BASED ON DISCUSSIONS WITH AUTO-

CRASH INFLUENCE: NON-NIGHTTIME (64% OF FATALS, 79% OF OTHERS) TWO VEHICLE ACCIDENTS (70% OF FATALS, 75% OF OTHERS) = 45% FATALS AND 59% OF OTHERS.

EFFECTIVENESS: MORE EFFECTIVE AT DAWN AND DUSK (AROUND ONE QUARTER OF NON-NIGHT ACCIDENTS). DAYTIME RUNNING LIGHTS AROUND 15% AND HEADLIGHTS SHOULD BE MORE EFFECTIVE - PERHAPS 20% (ALARM LESS EFFECTIVE). HEADLIGHT REPLACEMENT COULD BE COSTLY.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

- **% OF CRASHES INFLUENCED:** 45%
- **% EFFECTIVENESS:** 20%
- **$ SAVED PER VEHICLE/YEAR:** $12.78

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 7.79

TOTAL SAVINGS/YR: $75.44

NET SAVINGS/YR: $55.44

(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

- K58: DAYTIME RUNNING LIGHTS - A NORTH AMERICAN SUCCESS STORY
- R21: ROAD TRAFFIC ACCIDENTS IN NSW - 1999

* "HI" benefit cost value assumes above average exposure, where applicable"
SAFETY FEATURE ANALYSIS

FEATURE CODE | CARGO_BAR
DESCRIPTION | CARGO BARRIER
READINESS | HARVEST
CATEGORY | HAZARD TO OCCUPANTS

| NET COST (1 OFF) | $300.00 | MAINTENANCE/YR: | $0.00 |

COST NOTE: SURVEY OF DEALERS FOR COST AS OPTIONAL EQUIPMENT.
(Also see references)

CRASH INFLUENCE: STATION WAGGONS AND VANS = 25% OF ALL LIGHT VEH. BUT COSTED PER VEHICLE THEREFORE 100%. MOSTLY FRONTAL COLLISIONS - 60%.

EFFECTIVENESS: ONLY EFFECTIVE WHERE HAZARDOUS CARGO IS PRESENT. PERHAPS 5% OF CASES. NO EFFECT ON PROPERTY LOSS.

<table>
<thead>
<tr>
<th>CRASH SAVING ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATALS</td>
</tr>
<tr>
<td>SERIOUS</td>
</tr>
<tr>
<td>MINOR</td>
</tr>
<tr>
<td>PROPERTY</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
</tr>
</tbody>
</table>

TOTAL SAVINGS/YR: $20.19
NET SAVINGS/YR: $20.19
(Total savings - Maintenance)

DISCOUNT RATE: 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 0.47
HI: 1.89

MAIN REFERENCES FOR THIS SAFETY FEATURE
- **CODE** | **TITLE** |
- K15 | Automotive load protection |
- L78 | VEHICLE OCCUPANT SURVEY 1994 |
- M31 | INFLUENCE OF REAR (LUGGAGE) LOADING ON CHILD RESTRAINTS

FEATURE CODE | FOOT_PROT
DESCRIPTION | IMPROVED FOOT PROTECTION
READINESS | START-UP
CATEGORY | HAZARD TO OCCUPANTS

| NET COST (1 OFF) | $100.00 | MAINTENANCE/YR: | $0.00 |

COST NOTE: NOMINAL COST. IMPROVED DESIGNS SHOULD NOT COST MORE IN LONG TERM.
(Also see references)

CRASH INFLUENCE: MOSTLY FRONTAL COLLISIONS (60%) INVOLVING FOOT INJURY (6%) GIVES 4% FOR INJURY BUT NIL FOR FATALS AND PROPERTY.

EFFECTIVENESS: SCOPE FOR MAJOR IMPROVEMENT. 50% REDUCTION ASSUMED.

<table>
<thead>
<tr>
<th>CRASH SAVING ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATALS</td>
</tr>
<tr>
<td>SERIOUS</td>
</tr>
<tr>
<td>MINOR</td>
</tr>
<tr>
<td>PROPERTY</td>
</tr>
</tbody>
</table>

TOTAL SAVINGS/YR: $7.76
NET SAVINGS/YR: $7.76
(Total savings - Maintenance)

DISCOUNT RATE: 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 0.55
HI: 0.55

MAIN REFERENCES FOR THIS SAFETY FEATURE
- **CODE** | **TITLE** |
- L15 | Lower limb injuries to passenger car occupants |
- L16 | Foot and leg injuries in frontal car collisions |
- L21 | Seat belt limitations in collisions with no compromise of passenger compartment |
- L59 | The reduction of the risk of lower leg injuries in offset crash tests |
- L62 | Lower extremity loads in offset frontal crashes |
- L80 | SAFETY BENEFITS RESULTING FROM VEHICLE DESIGN CHANGES SINCE THE IN |
- L85 | FACTORS INFLUENCING LOWER EXTREMITY INJURIES

* "HI" benefit cost value assumes above average exposure, where applicable C16
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>GLASS_LAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>LAMINATED OR SHATTER-PROOF GLAZING FOR ALL WINDOWS</td>
</tr>
<tr>
<td>READINESS</td>
<td>START-UP</td>
</tr>
<tr>
<td>ACCEPTANCE</td>
<td>MODERATE</td>
</tr>
</tbody>
</table>

NET COST (1 OFF) $100.00
MAINTENANCE/YR: $0.00

COST NOTE: ASSUMES THAT WINDSCREENS ARE ALREADY LAMINATED. COST BASED ON ESTIMATED COST DIFFERENCE BETWEEN LAMINATED AND TEMPERED WINDSCREEN.

CRASH INFLUENCE: MOSTLY SIDE IMPACT AND ROLLOVER CRASHES - 30% OF CRASHES.

EFFECTIVENESS: ONLY EFFECTIVE WHERE IT HELPS TO RESTRAIN OCCUPANT WITHIN VEHICLE AND PREVENT CONTACT WITH EXTERNAL OBJECTS OR PREVENTS LACERATIONS. L58 ESTIMATES 3% OF ALL CASUALTIES SUGGESTING 10% EFFECTIVENESS.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>% OF CRASHES INFLUENCED</th>
<th>% EFFECTIVENESS</th>
<th>$ SAVED PER VEHICLE/YEAR</th>
<th>CRASH COST/VEHICLE/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATALS</td>
<td>30%</td>
<td>10%</td>
<td>$4.26</td>
<td>$142.00</td>
</tr>
<tr>
<td>SERIOUS</td>
<td>30%</td>
<td>10%</td>
<td>$7.56</td>
<td>$252.00</td>
</tr>
<tr>
<td>MINOR</td>
<td>10%</td>
<td>10%</td>
<td>$4.08</td>
<td>$136.00</td>
</tr>
<tr>
<td>PROPERTY</td>
<td>0%</td>
<td>0%</td>
<td>$0.00</td>
<td>$143.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE 7.00%
BENEFIT/COST RATIO: 1.12
TOTAL SAVINGS/YR: $15.90
NET SAVINGS/YR: $15.90

MAIN REFERENCES FOR THIS SAFETY FEATURE

- L58 Glazing effects of door or frame deformations in crashes, Part 2
- L64 Neck and spinal injuries: injury outcome and crash characteristics in Aust.

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE: HEAD_PAD CATEGORY: HAZARD TO OCCUPANTS
DESCRIPTION: HEAD PROTECTION PADDING READINESS: TAKE-OFF ACCEPTANCE: MODERATE

NET COST (1 OFF): $200.00 MAINTENANCE/YR: $0.00

COST NOTE: NOMINAL COST BASED ON PAPERS FROM 16TH ESV.
(Also see references)

CRASH INFLUENCE: MOSTLY SIDE IMPACTS AND ROLLOVERS (30% OF CRASHES).

EFFECTIVENESS: NHTSA ESTIMATE 6% OF ALL FATALITIES DUE TO HEAD CONTACTS, SUGGESTING 20% OF INFLUENCED CRASHES (6/0.3). ASSUME 50% EFFECTIVE IN THESE CASES = 10% OF FATAL AND SERIOUS, PERHAPS 5% OF MINOR.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

% OF CRASHES INFLUENCED: 30% 30% 30% 30%

% EFFECTIVENESS: 10% 10% 5% 0%

$ SAVED PER VEHICLE/YEAR: $4.26 $7.56 $2.04 $0.00

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.49 HI*: 0.49

TOTAL SAVINGS/YR: $13.86

NET SAVINGS/YR: $13.86
(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L17</td>
<td>Upper interior head, face and neck injury experiments</td>
</tr>
<tr>
<td>L26</td>
<td>Upper interior head impact protection of occupants in real world crashes</td>
</tr>
<tr>
<td>L36</td>
<td>The role of the upper car interior in car occupant brain injury</td>
</tr>
<tr>
<td>L38</td>
<td>Protective headgear for car occupants</td>
</tr>
<tr>
<td>L39</td>
<td>New requirements and solutions on head impact protection</td>
</tr>
<tr>
<td>L51</td>
<td>Head and neck injury in side impacts</td>
</tr>
<tr>
<td>L53</td>
<td>The risk of skull/brain injuries in modern cars</td>
</tr>
<tr>
<td>L61</td>
<td>Head injury risk assessment and prevention in automobile accidents</td>
</tr>
<tr>
<td>L81</td>
<td>NARROW OBJECT CRASHES AND INJURY OUTCOMES</td>
</tr>
<tr>
<td>L82</td>
<td>TIMBER POLE CRASHES</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURES ANALYSIS

FEATURE CODE HELMET
DESCRIPTION HELMETS/HEAD BANDS FOR OCCUPANTS
START-UP READINESS
ACCEPTANCE POOR

NET COST (1 OFF) $30.00 **MAINTENANCE/YR:** $10.00

COST NOTE: BASED ON A LOW COST BICYCLE HELMET (RETAIL VALUE)
(Also see references

CRASH INFLUENCE: MOSTLY SIDE IMPACTS AND ROLLOVERS (30% OF CRASHES).

EFFECTIVENESS: NHTSA ESTIMATE 6% OF ALL FATALITIES DUE TO HEAD CONTACTS, SUGGESTING 20% OF INFLUENCED CRASHES (6/0.3). ASSUME 50% EFFECTIVE IN THESE CASES = 10% OF FATAL AND SERIOUS. PERHAPS 5% OF MINOR. REPLACED EVERY THREE YEARS.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>10%</td>
<td>10%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$4.26</td>
<td>$7.56</td>
<td>$2.04</td>
<td>$0.00</td>
</tr>
<tr>
<td>DISCOUNT RATE</td>
<td>7.00% (OVER 10 YEARS)</td>
<td>TOTAL SAVINGS/YR</td>
<td>$13.86</td>
<td></td>
</tr>
<tr>
<td>BENEFIT/COST RATIO:</td>
<td>0.90</td>
<td>NET SAVINGS/YR</td>
<td>$3.86</td>
<td></td>
</tr>
</tbody>
</table>

(Total savings - Maintenance)

CRASH INFLUENCE: MOSTLY SIDE IMPACTS AND ROLLOVERS (30% OF CRASHES).

MAIN REFERENCES FOR THIS SAFETY FEATURE

- K01 Crashworthiness research at the NHMRC Road Accident Research Unit
- L26 Upper interior head impact protection of occupants in real world crashes
- L36 The role of the upper car interior in car occupant brain injury
- L38 Protective headgear for car occupants
- L39 New requirements and solutions on head impact protection
- L53 The risk of skull/brain injuries in modern cars
- L61 Head injury risk assessment and prevention in automobile accidents
- L81 NARROW OBJECT CRASHES AND INJURY OUTCOMES

* "HI" benefit cost value assumes above average exposure, where applicable

C19
SAFETY FEATURE ANALYSIS

KNEE_PAD

DESCRIPTION: KNEE BOLSTER/PADDING

NET COST (1 OFF): $100.00

MAINTENANCE/YR: $0.00

COST NOTE: BASED ON MUARC REPORT CR100.

CRASH INFLUENCE: Frontal crashes involving upper leg injury.

EFFECTIVENESS: Properly designed bolsters should be effective. MUARC estimates 5.3% HARM reduction

<table>
<thead>
<tr>
<th>CRASH SAVING ANALYSIS</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>0%</td>
<td>10%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>0%</td>
<td>50%</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.00</td>
<td>$12.60</td>
<td>$6.80</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 1.36

TOTAL SAVINGS/YR: $19.40

NET SAVINGS/YR: $19.40

(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L43</td>
<td>Feasibility of Occupant Protection Countermeasures</td>
</tr>
<tr>
<td>L85</td>
<td>FACTORS INFLUENCING LOWER EXTREMITY INJURIES</td>
</tr>
<tr>
<td>L89</td>
<td>COMPARISON OF EURONCAP ASSESSMENTS WITH INJURY CAUSATION IN ACCI</td>
</tr>
</tbody>
</table>

LOAD_RESTR

DESCRIPTION: LOAD RESTRAINT DEVICES (TETHERS)

NET COST (1 OFF): $100.00

MAINTENANCE/YR: $0.00

COST NOTE: AUTHOR'S EXPERIENCE PURCHASING THESE ITEMS (RETAIL).

CRASH INFLUENCE: FRONTAL CRASHES INVOLVES WAGONS, VANS AND HATCHES. ~ 40% OF LIGHT VEHICLE FLEET BUT 100% OF THESE VEHICLES.

EFFECTIVENESS: NO DATA. ASSUME HALF EFFECTIVENESS OF CARGO BARRIER DUE TO MISUSE AND LACK OF USE.

<table>
<thead>
<tr>
<th>CRASH SAVING ANALYSIS</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$2.56</td>
<td>$4.54</td>
<td>$2.45</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.67

TOTAL SAVINGS/YR: $9.54

NET SAVINGS/YR: $9.54

(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K15</td>
<td>Automotive load protection</td>
</tr>
<tr>
<td>M31</td>
<td>INFLUENCE OF REAR (LUGGAGE) LOADING ON CHILD RESTRAINTS</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable*
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>DESCRIPTION</th>
<th>NET COST (1 OFF)</th>
<th>MAINTENANCE/YR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_BONNET</td>
<td>BONNET AIRBAG FOR PEDESTRIAN PROTECTION</td>
<td>$500.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

NET SAVINGS/YR: $31.83

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.45

HI: 0.45

TOTAL SAVINGS/YR: $31.83

NET SAVINGS/YR: $31.83

(Total savings - Maintenance)

CRASH INFLUENCE: PEDESTRIAN FATALITIES EQUIVALENT TO 31% OF CAR OCCUPANT FATALITIES. 16% OF INJURIES.

EFFECTIVENESS: ABOUT 60% ARE SERIOUS HEAD INJURIES. ASSUME AIRBAGS WILL REDUCE THESE BY HALF.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>% OF CRASHES INFLUENCED</th>
<th>% EFFECTIVENESS</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>31%</td>
<td>30%</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>16%</td>
<td>30%</td>
<td>$13.21</td>
<td>$12.10</td>
<td>$6.53</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.45

HI: 0.45

TOTAL SAVINGS/YR: $31.83

NET SAVINGS/YR: $31.83

(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L77</td>
<td>Ford focuses on safety</td>
</tr>
<tr>
<td>N21</td>
<td>Pedestrian head impact testing at the University of Adelaide</td>
</tr>
<tr>
<td>N25</td>
<td>Computer simulation system for car-pedestrian accident</td>
</tr>
<tr>
<td>N29</td>
<td>SUMMARY OF IHRA PEDESTRIAN SAFETY WG</td>
</tr>
<tr>
<td>N30</td>
<td>EVALUATION OF PEDESTRIAN AIRBAG THROUGH MODELLING AND TESTING</td>
</tr>
<tr>
<td>R21</td>
<td>ROAD TRAFFIC ACCIDENTS IN NSW - 1999</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable
<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>PED_IMP</th>
<th>CATEGORY</th>
<th>HAZARD TO OTHER ROAD USERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>PEDESTRIAN FRIENDLY VEHICLE FRONT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>READINESS</td>
<td>START-UP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCEPTANCE</td>
<td>POOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Net Cost (1 off) $500.00 **MAINTENANCE/YR:** $0.00

Cost Note: Cost estimate based on 2 papers at 16th ESV (Lawrence and Otubushin). Mid-range use to balance government and industry estimates.

Crash Influence: Nearly all pedestrian accidents (27% of fatalities involving light vehicles, 25% of serious, 14% of minor).

Effectiveness: European research suggests measures would be highly effective but assume 50% to cover uncertainty.

Crash Saving Analysis

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash Cost/Vehicle/Year</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% of crashes influenced</td>
<td>27%</td>
<td>25%</td>
<td>14%</td>
<td>0%</td>
</tr>
<tr>
<td>% effectiveness</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>$ saved per vehicle/year</td>
<td>$19.17</td>
<td>$31.50</td>
<td>$9.52</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

Discount Rate: 7.00% (Over 10 Years)

Benefit/Cost Ratio: 0.85 **H*I*: 0.85

Total Savings/yr: $60.19

Net Savings/yr: $60.19 (Total savings - Maintenance)

Main References for this Safety Feature

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K54</td>
<td>Road safety strategy: current problems and future options</td>
</tr>
<tr>
<td>N02</td>
<td>Benefits from changes in vehicle exterior design - in Europe</td>
</tr>
<tr>
<td>N12</td>
<td>Pedestrian safety testing using the EEVC pedestrian impactors</td>
</tr>
<tr>
<td>N15</td>
<td>Pedestrian safety</td>
</tr>
<tr>
<td>N26</td>
<td>Australia's involvement in IHRA pedestrian safety</td>
</tr>
<tr>
<td>N28</td>
<td>Pedestrian injury projection in Australia if vehicles achieve high S</td>
</tr>
<tr>
<td>N29</td>
<td>Summary of IHRA pedestrian safety wg</td>
</tr>
<tr>
<td>N30</td>
<td>Evaluation of pedestrian airbag through modelling and testing</td>
</tr>
</tbody>
</table>

* “H*I” benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>DESCRIPTION</th>
<th>CATEGORY</th>
<th>READINESS</th>
<th>ACCEPTANCE</th>
<th>COST (1 OFF)</th>
<th>MAINTENANCE/YR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_SMART</td>
<td>SMART AIRBAG SYSTEM</td>
<td>OCCUPANT RESTRAINT</td>
<td>TAKE-OFF</td>
<td>MODERATE</td>
<td>$500.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

Cost Note:
Nominal cost based on Autoliv paper. (Also see references)

Crash Influence:
Assume frontal crashes only - 60% of all

Effectiveness:
Airbags + seat belts already highly effective. Smart airbags will benefit aged and small occupants - say 20% of all occupants and 50% effective = 10% of all occupants. K54 estimates 4 to 8% of all casualties.

Crash Saving Analysis

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>$142.00</th>
<th>$252.00</th>
<th>$136.00</th>
<th>$143.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of crashes influenced</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>$ saved per vehicle/year</td>
<td>$8.52</td>
<td>$15.12</td>
<td>$4.08</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

Benefit/Cost Ratio:
0.39

Main References for this Safety Feature

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K54</td>
<td>Road safety strategy: current problems and future options</td>
</tr>
<tr>
<td>L34</td>
<td>Smart seat belts - some population considerations</td>
</tr>
<tr>
<td>L44</td>
<td>New restraint technologies for vehicle safety</td>
</tr>
<tr>
<td>L57</td>
<td>Optimisation of an intelligent total restraint system</td>
</tr>
<tr>
<td>L83</td>
<td>EFFECT OF OCCUPANT CHARACTERISTICS IN INJURY RISK - ACTIVE RESTRAIN</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE: AIRBAG_D

DESCRIPTION: DRIVER AIRBAG

CATEGORY: OCCUPANT RESTRAINT

READYNESS: HARVEST

ACCEPTANCE: EXCELLENT

NET COST (1 OFF): $600.00

MAINTENANCE/YR: $0.00

COST NOTE: GLASS'S GUIDE AND DATA GATHERED FOR ANCAP.

(Also see references)

CRASH INFLUENCE: ASSUME FRONTAL CRASHES - 60% OF ALL

EFFECTIVENESS: L30 INDICATES FATALS AND SERIOUS INJURIES REDUCE BY 40%, BUT L43 INDICATES OVERALL SAVING OF 15%, SUGGESTING 25% EFFECTIVENESS. LATTER USED.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>% OF CRASHES INFLUENCED</th>
<th>$ SAVED PER VEHICLE/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATALS</td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td>$21.30</td>
</tr>
<tr>
<td>25%</td>
<td>$37.80</td>
</tr>
<tr>
<td>SERIOUS</td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td>$252.00</td>
</tr>
<tr>
<td>25%</td>
<td>$136.00</td>
</tr>
<tr>
<td>MINOR</td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td>$143.00</td>
</tr>
<tr>
<td>10%</td>
<td>$8.16</td>
</tr>
<tr>
<td>PROPERTY</td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td>$142.00</td>
</tr>
<tr>
<td>0%</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

TOTAL SAVINGS/YR: $67.26

NET SAVINGS/YR: $67.26

(Total savings - Maintenance)

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.79 **HI**: 0.79

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K07</td>
<td>The effectiveness of ADRs aimed at occupant protection.</td>
</tr>
<tr>
<td>L30</td>
<td>The effect of airbags to injuries and accident costs</td>
</tr>
<tr>
<td>L43</td>
<td>Feasibility of Occupant Protection Countermeasures</td>
</tr>
<tr>
<td>L45</td>
<td>Effectiveness of Occupant Protection Systems and Their Use</td>
</tr>
<tr>
<td>L79</td>
<td>EFFECTIVENESS OF AIRBAGS IN AUSTRALIA</td>
</tr>
<tr>
<td>L80</td>
<td>SAFETY BENEFITS RESULTING FROM VEHICLE DESIGN CHANGES SINCE THE IN</td>
</tr>
<tr>
<td>L86</td>
<td>EFFECTIVENESS OF (DRIVER) AIRBAGS IN AUSTRALIA</td>
</tr>
<tr>
<td>L90</td>
<td>STEERING COLUMN MOVEMENT IN SEVERE FRONTAL CRASHES - EFFECT ON AI</td>
</tr>
<tr>
<td>R09</td>
<td>ESV Government Reports - The Netherlands</td>
</tr>
<tr>
<td>R11</td>
<td>Willingness to pay for vehicle safety features</td>
</tr>
</tbody>
</table>

* “HI” benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE | AIRBAG_P
CATEGORY | OCCUPANT RESTRAINT
DESCRIPTION | FRONT PASSENGER AIRBAG
READINESS | HARVEST
ACCEPTANCE | MODERATE
NET COST (1 OFF) | $400.00
MAINTENANCE/YR: | $0.00

CRASH INFLUENCE:
FRONTAL CRASHES, INJURIES TO FRONT PASSENGER ONLY. 60% OF CRASHES x 20% OF INJURED OCCUPANTS (L78)

EFFECTIVENESS:
L43 SUGGESTS PASSENGER AIRBAG ABOUT 20% EFFECTIVE (LESS THAN DRIVER).

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>20%</td>
<td>20%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$3.41</td>
<td>$6.05</td>
<td>$1.63</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 0.19
HI*: 0.97

TOTAL SAVINGS/YR: $11.09
NET SAVINGS/YR: $11.09 (Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE
L43: Feasibility of Occupant Protection Countermeasures
L78: VEHICLE OCCUPANT SURVEY 1994
L80: SAFETY BENEFITS RESULTING FROM VEHICLE DESIGN CHANGES SINCE THE IN
L84: PRELIMINARY EVALUATION OF PASSENGER AIRBAG EFFECTIVENESS IN AUS
R04: Reducing traffic injuries through vehicle safety improvements

FEATURE CODE | CR_INT
CATEGORY | OCCUPANT RESTRAINT
DESCRIPTION | CHILD SEAT INTEGRATED
READINESS | TAKE-OFF
ACCEPTANCE | MODERATE
NET COST (1 OFF) | $500.00
MAINTENANCE/YR: | $0.00

CRASH INFLUENCE:
YOUNG CHILDREN INJURED IN CAR ACCIDENTS: 2% OF CAR OCCUPANTS INJURED OR KILLED.

EFFECTIVENESS:
ONLY EFFECTIVE WHERE A CHILD RESTRAINT IS NOT USED OR MISUSED. PERHAPS 50% OF SERIOUS INJURIES BASED ON M08.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>50%</td>
<td>50%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$1.42</td>
<td>$2.52</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 0.06
HI*: 0.28

TOTAL SAVINGS/YR: $3.94
NET SAVINGS/YR: $3.94 (Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE
M08: Children in car crashes
R21: ROAD TRAFFIC ACCIDENTS IN NSW - 1999

* "HI*" benefit cost value assumes above average exposure, where applicable
<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>READINESS</th>
<th>ACCEPTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR_ADJ</td>
<td>OCCUPANT RESTRAINT</td>
<td>ADJUSTABLE HEAD RESTRAINT</td>
<td>HARVEST</td>
<td>GOOD</td>
</tr>
</tbody>
</table>

NET COST (1 OFF)

<table>
<thead>
<tr>
<th></th>
<th>NET COST (1 OFF)</th>
<th>MAINTENANCE/YR:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

COST NOTE:

NOMINAL COST FOR ALL SEATS.

CRASH INFLUENCE:

MOSTLY REAR IMPACTS AND LOWER SEVERITY CRASHES - 23% OF MINOR INJURY AND PERHAPS 10% OF SERIOUS/FATAL CRASHES.

EFFECTIVENESS:

MARGINAL BECAUSE USER NEEDS TO ADJUST HEAD RESTRAINT TO OPTIMUM POSITION. PERHAPS 10% OF CASES.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>10%</td>
<td>10%</td>
<td>23%</td>
<td>23%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$1.42</td>
<td>$2.52</td>
<td>$3.13</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE:

7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO:

0.50

HI: 0.50

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K17</td>
<td>Effects of car and seat on the loading of occupant's neck in rear impacts</td>
</tr>
<tr>
<td>L64</td>
<td>Neck and spinal injuries: injury outcome and crash characteristics in Aust.</td>
</tr>
<tr>
<td>L65</td>
<td>What happens to the cervical spinal cord during neck injury?</td>
</tr>
<tr>
<td>L66</td>
<td>An overview of ergonomic issues in neck injury amelioration</td>
</tr>
<tr>
<td>L67</td>
<td>The measurement of neck injury risk</td>
</tr>
<tr>
<td>L68</td>
<td>Neck injury severity and vehicle design</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE: HR_RA
CATEGORY: OCCUPANT RESTRAINT
DESCRIPTION: HEAD RESTRAINTS FOR ALL REAR SEATS
READINESS: HARVEST
ACCEPTANCE: MODERATE

NET COST (1 OFF) $120.00
MAINTENANCE/YR: $0.00

COST NOTE: NOMINAL COST BASED ON 15% OF SEAT COST
(Also see references)

CRASH INFLUENCE: MOSTLY LOWER SEVERITY REAR IMPACTS (23% OF MINOR, 10% OF SERIOUS/FATAL)
WHERE THERE ARE REAR SEAT OCCUPANTS (12% OF CARS) = 3% OF MINOR, 1% OF SERIOUS/FATAL
EFFECTIVENESS: PERHAPS 30% EFFECTIVE IN THESE CRASHES, ASSUMING CORRECT GEOMETRY.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>1%</td>
<td>1%</td>
<td>3%</td>
<td>23%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.43</td>
<td>$0.76</td>
<td>$1.22</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE 7.00% (OVER 10 YEARS)
TOTAL SAVINGS/YR $2.41
NET SAVINGS/YR $2.41
(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

K17 Effects of car and seat on the loading of occupant's neck in rear impacts
L64 Neck and spinal injuries: injury outcome and crash characteristics in Aust.
L68 Neck injury severity and vehicle design
L78 VEHICLE OCCUPANT SURVEY 1994

FEATURE CODE: HR_RO
CATEGORY: OCCUPANT RESTRAINT
DESCRIPTION: HEAD RESTRAINTS FOR REAR OUTBOARD SEATS
READINESS: HARVEST
ACCEPTANCE: MODERATE

NET COST (1 OFF) $80.00
MAINTENANCE/YR: $0.00

COST NOTE: NOMINAL COST BASED ON 15% OF SEAT COST
(Also see references)

CRASH INFLUENCE: MOSTLY LOWER SEVERITY REAR IMPACTS (23% OF MINOR, 10% OF SERIOUS/FATAL)
WHERE THERE ARE OUTBOARD REAR SEAT OCCUPANTS (10% OF CARS) = 2% OF MINOR, 1% OF SERIOUS/FATAL
EFFECTIVENESS: PERHAPS 30% EFFECTIVE IN THESE CRASHES, ASSUMING CORRECT GEOMETRY.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.43</td>
<td>$0.76</td>
<td>$0.82</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE 7.00% (OVER 10 YEARS)
TOTAL SAVINGS/YR $2.00
NET SAVINGS/YR $2.00
(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

K17 Effects of car and seat on the loading of occupant's neck in rear impacts
L64 Neck and spinal injuries: injury outcome and crash characteristics in Aust.
L68 Neck injury severity and vehicle design
L78 VEHICLE OCCUPANT SURVEY 1994

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>Feature Code</th>
<th>Category</th>
<th>Description</th>
<th>Net Cost (1 Off)</th>
<th>MAINTENANCE/YR:</th>
<th>CRASH INFLUENCE:</th>
<th>EFFECTIVENESS:</th>
<th>Benefit/Cost Ratio:</th>
<th>Main References for this Safety Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB_BUCK</td>
<td>OCCUPANT RESTRAINT</td>
<td>Seat belt buckle mounted on seat (front)</td>
<td>$50.00</td>
<td>$0.00</td>
<td>Frontal crashes. 60% of all</td>
<td>Low - only effective where a poorly fitting seat belt resulted in injury. Most vehicles now have this feature. Say 10% of all casualties and 20% reduction = 2%</td>
<td>0.89</td>
<td>Low - only effective where a poorly fitting seat belt resulted in injury. Most vehicles now have this feature. Say 10% of all casualties and 20% reduction = 2%</td>
</tr>
<tr>
<td>SB_CR3</td>
<td>OCCUPANT RESTRAINT</td>
<td>Seat belt, centre rear 3-point</td>
<td>$100.00</td>
<td>$0.00</td>
<td>Mainly frontal crashes. 60% of all but only where centre rear seat is occupied and no child restraint used. Observational surveys suggest less than 1% of vehicles. Assume 1% overall.</td>
<td>3 point belt halves injury risk compared to 2 point belt. Assume 50% effective.</td>
<td>0.19</td>
<td>1.86</td>
</tr>
</tbody>
</table>

Crash Saving Analysis

<table>
<thead>
<tr>
<th>Feature Code</th>
<th>Description</th>
<th>Net Cost (1 Off)</th>
<th>MAINTENANCE/YR:</th>
<th>DISCOUNT RATE</th>
<th>BENEFIT/COST RATIO:</th>
<th>TOTAL SAVINGS/YR (OVER 10 YEARS)</th>
<th>NET SAVINGS/YR (OVER 10 YEARS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB_BUCK</td>
<td>Seat belt buckle mounted on seat (front)</td>
<td>$50.00</td>
<td>$0.00</td>
<td>7.00%</td>
<td>0.89</td>
<td>$6.36</td>
<td>$6.36</td>
</tr>
<tr>
<td>SB_CR3</td>
<td>Seat belt, centre rear 3-point</td>
<td>$100.00</td>
<td>$0.00</td>
<td>7.00%</td>
<td>0.19</td>
<td>$2.65</td>
<td>$2.65</td>
</tr>
</tbody>
</table>

* "Hi" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>SB_HARNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATEGORY</td>
<td>OCCUPANT RESTRAINT</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>HARNESS SEAT BELT FOR ADULTS (4PT OR 6PT)</td>
</tr>
<tr>
<td>READINESS</td>
<td>TAKE-OFF</td>
</tr>
<tr>
<td>ACCEPTANCE</td>
<td>POOR</td>
</tr>
<tr>
<td>NET COST (1 OFF)</td>
<td>$400.00</td>
</tr>
<tr>
<td>MAINTENANCE/YR</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

COST NOTE: NOMINAL COST BASED ON COST OF NORMAL SEAT BELTS AND ALLOWING FOR EXTRA ANCHORAGE POINTS.

CRASH INFLUENCE: FRONTAL CRASHES (60% OF ALL)

EFFECTIVENESS: LIMITED SCOPE FOR REDUCING INJURY BEYOND EXISTING 3 POINT BELTS. ASSUME 10% OF FATAL AND SERIOUS INJURY INVOLVE SEAT BELT LIMITATIONS AND HARNESS WOULD BE 10% EFFECTIVE = 1% OVERALL.

<table>
<thead>
<tr>
<th>CRASH SAVING ANALYSIS</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.85</td>
<td>$1.51</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.04

**HI*: 0.04

TOTAL SAVINGS/YR: $2.36

NET SAVINGS/YR: $2.36

(Also see references)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R25</td>
<td>RISK-BENEFIT ANALYSIS METHODS FOR VEHICLE SAFETY DEVICES</td>
</tr>
</tbody>
</table>

FEATURE CODE

<table>
<thead>
<tr>
<th>SB_HT_ADJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATEGORY</td>
</tr>
<tr>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>READINESS</td>
</tr>
<tr>
<td>ACCEPTANCE</td>
</tr>
<tr>
<td>NET COST (1 OFF)</td>
</tr>
<tr>
<td>MAINTENANCE/YR</td>
</tr>
</tbody>
</table>

COST NOTE: NOMINAL COST. NEGLIGIBLE COST IN LONG TERM.

CRASH INFLUENCE: MOSTLY FRONTAL CRASHES (60% OF ALL)

EFFECTIVENESS: CASES WHERE INCORRECT FIT OF SEAT BELT CONTRIBUTED TO INJURY. ASSUME 10% OF FATAL/SERIOUS INJURIES AND 20% EFFECTIVE = 2% OVERALL.

<table>
<thead>
<tr>
<th>CRASH SAVING ANALYSIS</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>2%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$1.70</td>
<td>$3.02</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.33

**HI*: 0.33

TOTAL SAVINGS/YR: $4.73

NET SAVINGS/YR: $4.73

(Also see references)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L83</td>
<td>EFFECT OF OCCUPANT CHARACTERISTICS IN INJURY RISK - ACTIVE RESTRAIN</td>
</tr>
<tr>
<td>M29</td>
<td>Seat belt and child restraint usage - 1993</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE: SB_ILOCK
CATEGORY: OCCUPANT RESTRAINT

DESCRIPTION: SEAT BELT INTERLOCK

READYNESS: TAKE-OFF
ACCEPTANCE: MODERATE

NET COST (1 OFF): $50.00
MAINTENANCE/YR: $0.00

COST NOTE: OE COST BASED ON MUARC REPORT CR100 AND ESV15 - TURBELL. THESE ARE RELATIVELY SIMPLE SYSTEMS.

CRASH INFLUENCE: ACCIDENTS (MOSTLY FRONTAL) INVOLVING UNRESTRAINED OCCUPANTS WHERE A SEAT BELT WAS AVAILABLE. 22% OF FATALS AND SERIOUS INJURIES, 3% OF MINOR INJURIES.

EFFECTIVENESS: SEAT BELTS 50% EFFECTIVE, COMPARED WITH UNRESTRAINED OCCUPANTS. INTERLOCK PERHAPS 50% EFFECTIVE = 25% OVERALL

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>22%</td>
<td>22%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$7.81</td>
<td>$13.86</td>
<td>$1.02</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00%
BENEFIT/COST RATIO: 3.19
HI: 3.19

MAIN REFERENCES FOR THIS SAFETY FEATURE

- **K54**: Road safety strategy: current problems and future options
- **L41**: Fitting and wearing of seat belts in Australia.
- **L43**: Feasibility of Occupant Protection Countermeasures
- **L54**: Optimizing seat belt usage by interlock systems

FEATURE CODE: SB_INFLATE
CATEGORY: OCCUPANT RESTRAINT

DESCRIPTION: INFLATABLE SEAT BELT

READYNESS: START-UP
ACCEPTANCE: GOOD

NET COST (1 OFF): $200.00
MAINTENANCE/YR: $0.00

COST NOTE: PROTOTYPE TECHNOLOGY. NOMINAL COST BASED ON PASSENGER AIRBAG (40%)

CRASH INFLUENCE: MOSTLY FRONTAL CRASHES (60% OF ALL)

EFFECTIVENESS: CASES WHERE SEAT BELTS CONTRIBUTED TO INJURY. ASSUME 10% OF ALL CASES AND INFALTABLE BELT 10% EFFECTIVE = 1% OVERALL

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.85</td>
<td>$1.51</td>
<td>$0.82</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00%
BENEFIT/COST RATIO: 0.11
HI: 0.11

MAIN REFERENCES FOR THIS SAFETY FEATURE

- **R25**: RISK-BENEFIT ANALYSIS METHODS FOR VEHICLE SAFETY DEVICES

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE	**DESCRIPTION**	**CATEGORY**	**READINESS**	**ACCEPTANCE**
SB_LL_F | SEAT BELT LOAD LIMITERS, FRONT | OCCUPANT RESTRAINT | TAKE-OFF | MODERATE

NET COST (1 OFF) $20.00
MAINTENANCE/YR: $0.00
COST NOTE: ASSUMED SIMILAR TO WEBBING CLAMPS.

CRASH INFLUENCE: MOSTLY FRONTAL CRASHES (60% OF ALL)

EFFECTIVENESS: CASES WHERE SEAT BELT CONTRIBUTED TO INJURY. ASSUME 10% OF ALL CASES AND THAT LOAD LIMITERS WOULD BE 20% EFFECTIVE = 2% OVERALL FOR FATAL AND SERIOUS. LESS FOR MINOR INJURY.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>2%</td>
<td>2%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$1.70</td>
<td>$3.02</td>
<td>$0.82</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 1.95
**HI*: 1.95

TOTAL SAVINGS/YR $5.54
NET SAVINGS/YR $5.54 (Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R25</td>
<td>RISK-BENEFIT ANALYSIS METHODS FOR VEHICLE SAFETY DEVICES</td>
</tr>
</tbody>
</table>

FEATURE CODE	**DESCRIPTION**	**CATEGORY**	**READINESS**	**ACCEPTANCE**
SB_LL_R | SEAT BELT LOAD LIMITERS, REAR | OCCUPANT RESTRAINT | TAKE-OFF | MODERATE

NET COST (1 OFF) $20.00
MAINTENANCE/YR: $0.00
COST NOTE: BASED ON MUARC REPORT CR100

CRASH INFLUENCE: MOSTLY FRONTAL CRASHES WITH REAR SEAT OCCUPANTS. 60% OF ALL CRASHES X 13% REAR SEAT OCCUPANCY = 8% OVERALL.

EFFECTIVENESS: CASES WHERE SEAT BELTS CONTRIBUTED TO INJURY - HIGHER THAN FRONT SEATS - SAY 15% OF ALL. ASSUME LOAD LIMITERS 20% EFFECTIVE = 3% OVERALL

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>3%</td>
<td>3%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.34</td>
<td>$0.60</td>
<td>$0.11</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 0.37
**HI*: 1.85

TOTAL SAVINGS/YR $1.05
NET SAVINGS/YR $1.05 (Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L60</td>
<td>Optimized restraint systems for rear seat passengers</td>
</tr>
<tr>
<td>M29</td>
<td>Seat belt and child restraint usage - 1993</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE: SB_PT_F
DESCRIPTION: SEAT BELT PRETENSIONER, FRONT
NET COST (1 OFF): $100.00
MAINTENANCE/YR: $0.00

CRASH INFLUENCE: MOSTLY FRONTAL CRASHES (60% OF ALL)

EFFECTIVENESS: CASES WHERE SEAT BELTS ALLOWED TOO MUCH OCCUPANT EXCURSION. SAY 20% OF ALL CASES. ASSUME 25% EFFECTIVENESS FOR PRETENSIONERS = 5% OVERALL

<table>
<thead>
<tr>
<th>CRASH SAVING ANALYSIS</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$4.26</td>
<td>$7.56</td>
<td>$4.08</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

TOTAL SAVINGS/YR: $15.90
NET SAVINGS/YR: $15.90

CRASH INFLUENCE: MOSTLY FRONTAL CRASHES (60%) WITH REAR SEAT OCCUPANTS (13%) = 8% OVERALL

EFFECTIVENESS: CASES WHERE SEAT BELTS ALLOWED TOO MUCH OCCUPANT EXCURSION. SAY 20% OF ALL CASES. ASSUME 25% EFFECTIVENESS FOR PRETENSIONERS = 5% OVERALL

<table>
<thead>
<tr>
<th>CRASH SAVING ANALYSIS</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.57</td>
<td>$1.01</td>
<td>$0.54</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

TOTAL SAVINGS/YR: $2.12
NET SAVINGS/YR: $2.12

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L43</td>
<td>Feasibility of Occupant Protection Countermeasures</td>
</tr>
<tr>
<td>L60</td>
<td>Optimized restraint systems for rear seat passengers</td>
</tr>
<tr>
<td>M29</td>
<td>Seat belt and child restraint usage - 1993</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE: SB_WB_R
CATEGORY: OCCUPANT RESTRAINT

DESCRIPTION: SEAT BELT WEBBING GRABBERS, REAR

READINESS: TAKE-OFF

ACCEPTANCE: MODERATE

<table>
<thead>
<tr>
<th>NET COST (1 OFF)</th>
<th>$40.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINTENANCE/YR:</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

COST NOTE: BASED ON MUARC REPORT CR100. (Also see references)

CRASH INFLUENCE: MOSTLY FRONTAL CRASHES (60%) WITH REAR SEAT OCCUPANTS (13%) = 8% OVERALL

EFFECTIVENESS: CASES WHERE SEAT BELTS ALLOWED TOO MUCH OCCUPANT EXCURSION. SAY 20% OF ALL CASES. ASSUME 10% EFFECTIVENESS FOR WEBBING GRABBERS = 2% OVERALL

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.23</td>
<td>$0.40</td>
<td>$0.22</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.15

HI: 0.74

TOTAL SAVINGS/YR $0.85

NET SAVINGS/YR $0.85

(Also see references)

TOTAL SAVINGS/YR (OVER 10 YEARS)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L60</td>
<td>Optimized restraint systems for rear seat passengers</td>
</tr>
<tr>
<td>M29</td>
<td>Seat belt and child restraint usage - 1993</td>
</tr>
</tbody>
</table>

FEATURE CODE: SB_WG_F
CATEGORY: OCCUPANT RESTRAINT

DESCRIPTION: SEAT BELT WEBBING GRABBERS, FRONT

READINESS: HARVEST

ACCEPTANCE: GOOD

<table>
<thead>
<tr>
<th>NET COST (1 OFF)</th>
<th>$40.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINTENANCE/YR:</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

COST NOTE: BASED ON MUARC REPORT CR100. (Also see references)

CRASH INFLUENCE: MOSTLY FRONTAL CRASHES (60% OF ALL)

EFFECTIVENESS: CASES WHERE SEAT BELTS ALLOWED TOO MUCH OCCUPANT EXCURSION. SAY 20% OF ALL CASES. ASSUME 10% EFFECTIVENESS FOR WEBBING GRABBERS = 2% OVERALL

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$1.70</td>
<td>$3.02</td>
<td>$1.63</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 1.12

HI: 1.12

TOTAL SAVINGS/YR $6.36

NET SAVINGS/YR $6.36

(Also see references)

TOTAL SAVINGS/YR (OVER 10 YEARS)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L43</td>
<td>Feasibility of Occupant Protection Countermeasures</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable

C33
SAFETY FEATURE ANALYSIS

FEATURE CODE: SEAT_SUB

DESCRIPTION: ANTI-SUBMARING SEAT DESIGN

READYNESS: HARVEST

ACCEPTANCE: MODERATE

NET COST (1 OFF): $40.00

MAINTENANCE/YR: $0.00

COST NOTE: BASED ON MUARC REPORT CR100.

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 1.12

EFFECTIVENESS: CASES WHERE SUBMARINING A FACTOR. PERHAPS 10% OF ALL. IMPROVED SEAT DESIGN MIGHT BE 20% EFFECTIVE = 2% OVERALL.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$1.70</td>
<td>$3.02</td>
<td>$1.63</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

TOTAL SAVINGS/YR: $6.36

NET SAVINGS/YR: $6.36

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L43</td>
<td>Feasibility of Occupant Protection Countermeasures</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable

FEATURE CODE: SIDE_AB_FH

DESCRIPTION: SIDE AIRBAG - FRONT, HEAD-PROTECTING (CURTAIN)

READYNESS: TAKE-OFF

ACCEPTANCE: GOOD

NET COST (1 OFF): $400.00

MAINTENANCE/YR: $0.00

COST NOTE: USUALLY PART OF SAFETY PACKAGE. NOMINAL COST BASED ON PASSENGER AIRBAG.

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.20

EFFECTIVENESS: See reference L75. 4.6% of US crashes potentially influenced by head-protecting tubular struc

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRASH COST/VEHICLE/YEAR</td>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
</tr>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>50%</td>
<td>50%</td>
<td>25%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$3.55</td>
<td>$6.30</td>
<td>$1.70</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

TOTAL SAVINGS/YR: $11.55

NET SAVINGS/YR: $11.55

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L75</td>
<td>Benefits of the inflatable tubular structure</td>
</tr>
<tr>
<td>L81</td>
<td>NARROW OBJECT CRASHES AND INJURY OUTCOMES</td>
</tr>
<tr>
<td>L82</td>
<td>TIMBER POLE CRASHES</td>
</tr>
<tr>
<td>L88</td>
<td>CRASH AND FIELD PERFORMANCE OF SIDE AIRBAGS</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>SIDE_AB_RH</th>
<th>CATEGORY</th>
<th>OCCUPANT RESTRAINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>SIDE AIRBAG, REAR, HEAD-PROTECTING</td>
<td>TAKE-OFF</td>
<td>ACCEPTANCE GOOD</td>
</tr>
<tr>
<td>NET COST (1 OFF)</td>
<td>$400.00</td>
<td>MAINTENANCE/YR: $0.00</td>
<td></td>
</tr>
</tbody>
</table>

COST NOTE: NOMINAL COST BASED ON PASSENGER AIRBAG.
(Also see references)

CRASH INFLUENCE: US RESEARCH SUGGESTS 5% OF CRASHES INFLUENCED BY HEAD PROTECTING SIDE AIRBAGS. 13% OF VEHICLES HAVE REAR SEAT OCCUPANTS = 1% OVERALL.

EFFECTIVENESS: ASSUME 50% EFFECTIVE FOR FATALS AND SERIOUS INJURIES. LESS FOR MINOR.

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>$142.00</th>
<th>$252.00</th>
<th>$136.00</th>
<th>$143.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>50%</td>
<td>50%</td>
<td>25%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$0.71</td>
<td>$1.26</td>
<td>$0.34</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.04

HI*: 0.20

TOTAL SAVINGS/YR $2.31

NET SAVINGS/YR $2.31
(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K02</td>
<td>Advanced designs for side impact and rollover protection</td>
</tr>
<tr>
<td>K14</td>
<td>Side impact protection opportunities</td>
</tr>
<tr>
<td>L03</td>
<td>Reduction of head rotational motions in side impacts - inflatable curtains</td>
</tr>
<tr>
<td>L22</td>
<td>Development of side impact airbag system for head and thorax protection</td>
</tr>
<tr>
<td>L55</td>
<td>Evaluation of advanced side airbags for head protection</td>
</tr>
<tr>
<td>L75</td>
<td>Benefits of the inflatable tubular structure</td>
</tr>
<tr>
<td>L81</td>
<td>NARROW OBJECT CRASHES AND INJURY OUTCOMES</td>
</tr>
<tr>
<td>L82</td>
<td>TIMBER POLE CRASHES</td>
</tr>
<tr>
<td>L88</td>
<td>CRASH AND FIELD PERFORMANCE OF SIDE AIRBAGS</td>
</tr>
<tr>
<td>M29</td>
<td>Seat belt and child restraint usage - 1993</td>
</tr>
</tbody>
</table>

* "HI*** benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE: SIDE_AB_RT
CATEGORY: OCCUPANT RESTRAINT
DESCRIPTION: SIDE AIRBAG, REAR, THORAX

NET COST (1 OFF): $400.00
MAINTENANCE/YR: $0.00

COST NOTE: NOMINAL COST BASED ON PASSENGER AIRBAG (70%)
(Also see references)

CRASH INFLUENCE: SIDE IMPACTS (20%) WITH REAR SEAT OCCUPANTS (13%) = 3% OVERALL.

EFFECTIVENESS: ASSUME 50% EFFECTIVENESS FOR FATAL AND SERIOUS.

<table>
<thead>
<tr>
<th>CRASH NO.</th>
<th>% OF CRASHES INFLUENCED</th>
<th>% EFFECTIVENESS</th>
<th>$ SAVED PER VEHICLE/YEAR</th>
<th>CRASH COST/VEHICLE/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATALS</td>
<td>3%</td>
<td>50%</td>
<td>$2.13</td>
<td>$142.00</td>
</tr>
<tr>
<td>SERIOUS</td>
<td>3%</td>
<td>50%</td>
<td>$3.78</td>
<td>$252.00</td>
</tr>
<tr>
<td>MINOR</td>
<td>3%</td>
<td>25%</td>
<td>$1.02</td>
<td>$136.00</td>
</tr>
<tr>
<td>PROPERTY</td>
<td>0%</td>
<td>0%</td>
<td>$0.00</td>
<td>$143.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00%
TOTAL SAVINGS/YR: $6.93
NET SAVINGS/YR: $6.93
(Total savings - Maintenance)

BENEFIT/COST RATIO: 0.12
HI: 0.61

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K02</td>
<td>Advanced designs for side impact and rollover protection</td>
</tr>
<tr>
<td>K14</td>
<td>Side impact protection opportunities</td>
</tr>
<tr>
<td>K25</td>
<td>Side impact regulation benefits for Australia</td>
</tr>
<tr>
<td>L22</td>
<td>Development of side impact airbag system for head and thorax protection</td>
</tr>
<tr>
<td>L25</td>
<td>Strategies for passenger car designs to improve side impact protection</td>
</tr>
<tr>
<td>L27</td>
<td>Field study on the potential benefit of different side airbag systems</td>
</tr>
<tr>
<td>L88</td>
<td>CRASH AND FIELD PERFORMANCE OF SIDE AIRBAGS</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable.
SAFETY FEATURE ANALYSIS

FEATURE CODE: SIDE_ABFT CATEGORY: OCCUPANT RESTRAINT

DESCRIPTION: SIDE AIRBAG - FRONT SEAT, THORAX

READINESS: HARVEST **ACCEPTANCE:** GOOD

NET COST (1 OFF): $400.00 **MAINTENANCE/YR:** $0.00

COST NOTE: BASED ON PROPORTIONAL COST OF A TYPICAL "SAFETY PACK" THAT INCLUDES SIDE AIRBAGS AND DATA GATHERING FOR ANCAP.

CRASH INFLUENCE: SIDE IMPACT CRASHES (20%)

EFFECTIVENESS: ASSUME 50% EFFECTIVENESS FOR FATAL AND SERIOUS.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

% OF CRASHES INFLUENCED:
- FATALS: 20%
- SERIOUS: 20%
- MINOR: 20%

% EFFECTIVENESS:
- FATALS: 50%
- SERIOUS: 50%
- MINOR: 25%

$ SAVED PER VEHICLE/YEAR:
- FATALS: $14.20
- SERIOUS: $25.20
- MINOR: $6.80

DISCOUNT RATE: 7.00% **(OVER 10 YEARS)**

TOTAL SAVINGS/YR: $46.20 **NET SAVINGS/YR:** $46.20

(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K02</td>
<td>Advanced designs for side impact and rollover protection</td>
</tr>
<tr>
<td>K14</td>
<td>Side impact protection opportunities</td>
</tr>
<tr>
<td>K25</td>
<td>Side impact regulation benefits for Australia</td>
</tr>
<tr>
<td>L22</td>
<td>Development of side impact airbag system for head and thorax protection</td>
</tr>
<tr>
<td>L25</td>
<td>Strategies for passenger car designs to improve side impact protection</td>
</tr>
<tr>
<td>L27</td>
<td>Field study on the potential benefit of different side airbag systems</td>
</tr>
<tr>
<td>L88</td>
<td>CRASH AND FIELD PERFORMANCE OF SIDE AIRBAGS</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable

FEATURE CODE: CRASH_REC CATEGORY: OTHER AVOIDANCE FACTORS

DESCRIPTION: CRASH RECORDER

READINESS: START-UP **ACCEPTANCE:** POOR

NET COST (1 OFF): $500.00 **MAINTENANCE/YR:** $0.00

COST NOTE: BASED ON RTA SPEED CONTROL STUDY.

CRASH INFLUENCE: SPEED-RELATED CRASHES 40% OF FATALS AND 15% OF OTHERS (R21).

EFFECTIVENESS: KNOWLEDGE THAT SPEEDING BEHAVIOUR IS BEING RECORDED MAY INFLUENCE SOME DRIVERS TO SLOW DOWN. PERHAPS 20% REDUCTION.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

% OF CRASHES INFLUENCED:
- FATALS: 40%
- SERIOUS: 15%
- MINOR: 15%

% EFFECTIVENESS:
- FATALS: 20%
- SERIOUS: 20%
- MINOR: 20%

$ SAVED PER VEHICLE/YEAR:
- FATALS: $11.36
- SERIOUS: $7.56
- MINOR: $4.08

DISCOUNT RATE: 7.00% **(OVER 10 YEARS)**

TOTAL SAVINGS/YR: $27.29 **NET SAVINGS/YR:** $27.29

(Total savings - Maintenance)

MAIN REFERENCES FOR THIS SAFETY FEATURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R21</td>
<td>ROAD TRAFFIC ACCIDENTS IN NSW - 1999</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>DESCRIPTION</th>
<th>CATEGORY</th>
<th>OTHER AVOIDANCE FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG.IMMOB</td>
<td>ENGINE IMMOBILISER</td>
<td>HARVEST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACCEPTANCE</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>NET COST (1 OFF)</td>
<td>$300.00</td>
<td>MAINTENANCE/YR: $0.00</td>
<td></td>
</tr>
</tbody>
</table>

DISCOUNT RATE: GLASS'S GUIDE.
CRASH INFLUENCE: JOY RIDING DETERRENT.
EFFECTIVENESS: REDUCED RISK OF THEFT

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

% OF CRASHES INFLUENCED
- FATALS: 10%
- SERIOUS: 10%
- MINOR: 5%
- PROPERTY: 5%

% EFFECTIVENESS
- FATALS: 20%
- SERIOUS: 20%
- MINOR: 20%
- PROPERTY: 20%

$ SAVED PER VEHICLE/YEAR
- FATALS: $2.84
- SERIOUS: $5.04
- MINOR: $1.36
- PROPERTY: $1.43

DISCOUNT RATE: 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 0.25
TOTAL SAVINGS/YR: $10.67
NET SAVINGS/YR: $10.67

- **MAIN REFERENCES FOR THIS SAFETY FEATURE**
 - R25: RISK-BENEFIT ANALYSIS METHODS FOR VEHICLE SAFETY DEVICES

OTHER AVOIDANCE FACTORS

<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>DESCRIPTION</th>
<th>CATEGORY</th>
<th>POST-CRASH FACTORS (RESCUE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUEL_CUT</td>
<td>FUEL AND ENGINE CUT-OFF IN SEVERE CRASH</td>
<td>TAKE-OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACCEPTANCE</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>NET COST (1 OFF)</td>
<td>$100.00</td>
<td>MAINTENANCE/YR: $0.00</td>
<td></td>
</tr>
</tbody>
</table>

COST NOTE: NOMINAL COST BASED ON SIMILAR KITS SUCH AS HEADLIGHT ALERT.

CRASH INFLUENCE: ALL SEVERE CRASHES (FATAL OR INJURY) INVOLVING FIRE. ABOUT 3%

EFFECTIVENESS: MOST FIRES PROBABLY DUE TO RUPTURE OF FUEL TANK OR LINES. PERHAPS 20% REDUCTION FOR FATAL AND SERIOUS, 10% FOR MINOR. NIL FOR PROPERTY.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

% OF CRASHES INFLUENCED
- FATALS: 3%
- SERIOUS: 3%
- MINOR: 3%
- PROPERTY: 3%

% EFFECTIVENESS
- FATALS: 20%
- SERIOUS: 20%
- MINOR: 10%
- PROPERTY: 0%

$ SAVED PER VEHICLE/YEAR
- FATALS: $0.85
- SERIOUS: $1.51
- MINOR: $0.41
- PROPERTY: $0.00

DISCOUNT RATE: 7.00% (OVER 10 YEARS)
BENEFIT/COST RATIO: 0.19
TOTAL SAVINGS/YR: $2.77
NET SAVINGS/YR: $2.77

- **MAIN REFERENCES FOR THIS SAFETY FEATURE**
 - P12: Australian bus safety standards
 - Q03: A searchable transportation fire safety bibliography
 - Q04: Field data improvements for fire safety research
 - Q07: A case study of 214 fatal crashes involving fire

* "HI" benefit cost value assumes above average exposure, where applicable
SAFETY FEATURE ANALYSIS

FEATURE CODE | **HAZ_Act**
DESCRIPTION | HAZARD LIGHT ACTIVATE IN SEVERE CRASH
READINESS | HARVEST
ACCEPTANCE | GOOD
NET COST (1 OFF) | $50.00
MAINTENANCE/YR: | $0.00
COST NOTE: | RELATIVELY SIMPLE SWITCHING MECHANISM IF TRIGGERED BY AIRBAG SYSTEM. (Also see references)
ESTIMATED COST OF RELAY AND WIRING HARNESS.
CRASH INFLUENCE: | SEVERE CRASHES (SERIOUS OR FATAL)
EFFECTIVENESS: | REDUCES DANGER FROM OTHER VEHICLES. PROBABLY VERY SMALL REDUCTION - PERHAPS 2%.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

% OF CRASHES INFLUENCED	100%	100%	0%	0%
% EFFECTIVENESS	2%	2%	0%	0%
$ SAVED PER VEHICLE/YEAR	$2.84	$5.04	$0.00	$0.00

DISCOUNT RATE: 7.00%
(OVER 10 YEARS)
BENEFIT/COST RATIO: 1.11
**HI*: 1.11
TOTAL SAVINGS/YR: $7.88
NET SAVINGS/YR: $7.88

MAIN REFERENCES FOR THIS SAFETY FEATURE

- K54
 Road safety strategy: current problems and future options
- Q05
 Relationship between crash casualties and crash attributes

FEATURE CODE | **MAYDAY**
DESCRIPTION | MAYDAY DISTRESS CALL IN SEVERE CRASH
READINESS | START-UP
ACCEPTANCE | MODERATE
NET COST (1 OFF) | $500.00
MAINTENANCE/YR: | $0.00
COST NOTE: | PROTOTYPES ONLY AT THIS STAGE. NOMINAL COST BASED ON SIMILAR ELECTRONIC EQUIP SUCH AS GPS. (Also see references)
CRASH INFLUENCE: | ALL SEVERE AND SERIOUS CRASHES.
EFFECTIVENESS: | UK DETR ESTIMATES 17% OF FATALS PREVENTABLE BY MORE TIMELY TREATMENT. ASSUME MAYDAY HALF AS EFFECTIVE AND HALF AGAIN FOR SERIOUS INJURIES.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>FATALS</th>
<th>SERIOUS</th>
<th>MINOR</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142.00</td>
<td>$252.00</td>
<td>$136.00</td>
<td>$143.00</td>
<td></td>
</tr>
</tbody>
</table>

% OF CRASHES INFLUENCED	100%	100%	0%	0%
% EFFECTIVENESS	8%	4%	0%	0%
$ SAVED PER VEHICLE/YEAR	$11.36	$10.08	$0.00	$0.00

DISCOUNT RATE: 7.00%
(OVER 10 YEARS)
BENEFIT/COST RATIO: 0.30
**HI*: 0.30
TOTAL SAVINGS/YR: $21.44
NET SAVINGS/YR: $21.44

MAIN REFERENCES FOR THIS SAFETY FEATURE

- K54
 Road safety strategy: current problems and future options
- Q01
 Design and implementation of an automobile collision notification system
- Q05
 Relationship between crash casualties and crash attributes
- Q08
 ENHANCING POST-CRASH SAFETY THROUGH AUTOMATIC COLLISION NOTIFICATION
- Q09
 AUTOMATED CRASH NOTIFICATION: DESIGN AND VALIDATION

* "HI" benefit cost value assumes above average exposure, where applicable
<table>
<thead>
<tr>
<th>FEATURE CODE</th>
<th>PHONE</th>
<th>CATEGORY</th>
<th>POST-CRASH FACTORS (RESCUE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>MOBILE PHONE AVAILABLE IN EVENT OF ACCIDENT</td>
<td>HARVEST</td>
<td>GOOD</td>
</tr>
<tr>
<td>NET COST (1 OFF)</td>
<td>$200.00</td>
<td>MAINTENANCE/YR: $0.00</td>
<td></td>
</tr>
</tbody>
</table>

- **COST NOTE:** COST OF HANDS-FREE KIT ONLY.
- **CRASH INFLUENCE:** ALL SERIOUS ACCIDENTS WHERE A NORMAL PHONE IS NOT READILY AVAILABLE. ASSUME 100%. IGNORE SAFETY HAZARDS DUE TO HAVING PHONE IN VEHICLE.
- **EFFECTIVENESS:** UK DETR ESTIMATES 17% OF FATALITIES COULD BE PREVENTED BY MORE TIMELY TREATMENT. ASSUME MOBILE PHONE ONE QUARTER OF THESE AND SERIOUS INJURIES HALF AGAIN.

CRASH SAVING ANALYSIS

<table>
<thead>
<tr>
<th>CRASH COST/VEHICLE/YEAR</th>
<th>$142.00</th>
<th>$252.00</th>
<th>$136.00</th>
<th>$143.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>% OF CRASHES INFLUENCED</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>% EFFECTIVENESS</td>
<td>4%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>$ SAVED PER VEHICLE/YEAR</td>
<td>$5.68</td>
<td>$5.04</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

DISCOUNT RATE: 7.00% (OVER 10 YEARS)

BENEFIT/COST RATIO: 0.38

HI: 0.38

<p>| MAIN REFERENCES FOR THIS SAFETY FEATURE |</p>
<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K54</td>
<td>Road safety strategy: current problems and future options</td>
</tr>
<tr>
<td>Q08</td>
<td>ENHANCING POST-CRASH SAFETY THROUGH AUTOMATIC COLLISION NOT.</td>
</tr>
<tr>
<td>Q09</td>
<td>AUTOMATED CRASH NOTIFICATION: DESIGN AND VALIDATION</td>
</tr>
</tbody>
</table>

* "HI" benefit cost value assumes above average exposure, where applicable"
Appendix D - Derivation of cost estimates
ESTIMATED COST OF SAFETY FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>OE Cost</th>
<th>Annual Maint.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_BONNET</td>
<td>Bonnet airbag for pedestrian protection</td>
<td>$500.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Not in production. Cost based on passenger airbag, assuming volume production in long term.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB_SMART</td>
<td>Smart airbag system</td>
<td>$500.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Nominal cost based on Autoliv paper.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS</td>
<td>ABS brakes</td>
<td>$1,000.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Glass's guide typical value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR_COND</td>
<td>Air conditioning/climate control</td>
<td>$2,000.00</td>
<td>$40.00</td>
</tr>
<tr>
<td></td>
<td>Glass's guide and survey of dealers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRBAG_D</td>
<td>Driver airbag</td>
<td>$1,000.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Glass's guide and data gathered for ANCAP.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRBAG_P</td>
<td>Front passenger airbag</td>
<td>$550.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Glass's guide and survey of dealers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALC_LOCK</td>
<td>Alcohol/drug interlock</td>
<td>$200.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Prototypes only at this stage. Based on cost of similar gadgets such as headlight alert.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTO_TRANS</td>
<td>Automatic transmission</td>
<td>$1,100.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Glass's guide.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDY_COL</td>
<td>Conspicuous body colour</td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Nominal cost. Could be nil cost for some colours. For comparison "metallic" paint typically costs about $200-$300.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARGO_BAR</td>
<td>Cargo barrier</td>
<td>$300.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Survey of dealers for cost as optional equipment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR_INT</td>
<td>Child seat integrated</td>
<td>$500.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Nominal cost based on seat costs and upmarket child restraints.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td>Description</td>
<td>OE Cost</td>
<td>Annual Maint.</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>CRASH_REC</td>
<td>CRASH RECORDER</td>
<td>$500.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>BASED ON RTA SPEED CONTROL STUDY.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRUISE</td>
<td>CRUISE CONTROL</td>
<td>$450.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>SURVEY OF DEALERS AND GLASS'S GUIDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRL</td>
<td>DAYTIME RUNNING LIGHTS</td>
<td>$50.00</td>
<td>$2.00</td>
</tr>
<tr>
<td></td>
<td>OE COSTS AND ANNUAL MAINTENANCE BASED ON DUTCH AND CANADIAN ESTIMATES. AFTERMARKET COST ABOUT $200 BASED ON DISCUSSIONS WITH AUTO-ELECTRICIANS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRV_LIGHTS</td>
<td>DRIVING LIGHTS</td>
<td>$100.00</td>
<td>$5.00</td>
</tr>
<tr>
<td></td>
<td>RETAIL PRICE OF BASIC SYSTEMS. MAINTENANCE COST ASSUMES GLOBE FAILURE EVERY 3 YEARS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENG_IMMOM</td>
<td>ENGINE IMMOBILISER</td>
<td>$300.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>GLASS'S GUIDE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOG_LAMPS</td>
<td>FOG LAMPS</td>
<td>$100.00</td>
<td>$5.00</td>
</tr>
<tr>
<td></td>
<td>RETAIL PRICE OF BASIC SYSTEMS. MAINTENANCE COST ASSUMES GLOBE FAILURE EVERY 3 YEARS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOT_PROT</td>
<td>IMPROVED FOOT PROTECTION</td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>NOMINAL COST. IMPROVED DESIGNS SHOULD NOT COST MORE IN LONG TERM.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUEL_CUT</td>
<td>FUEL AND ENGINE CUT-OFF IN SEVERE CRASH</td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>NOMINAL COST BASED ON SIMILAR KITS SUCH AS HEADLIGHT ALERT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLASS_LAM</td>
<td>LAMINATED OR SHATTER-PROOF GLAZING FOR ALL WINDOWS</td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>ASSUMES THAT WINDSCREENS ARE ALREADY LAMINATED. COST BASED ON ESTIMATED COST DIFFERENCE BETWEEN LAMINATED AND TEMPERED WINDSCREEN, EXTRAPOLATED TO REMAINING GLAZING.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAZ_ACT</td>
<td>HAZARD LIGHT ACTIVATE IN SEVERE CRASH</td>
<td>$50.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>RELATIVELY SIMPLE SWITCHING MECHANISM IF TRIGGERED BY AIRBAG SYSTEM. ESTIMATED COST OF RELAY AND WIRING HARNESS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAD_PAD</td>
<td>HEAD PROTECTION PADDING</td>
<td>$200.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>NOMINAL COST BASED ON PAPERS FROM 16TH ESV.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>OE Cost</td>
<td>Annual Maint</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>HEADL_ON</td>
<td>$50.00</td>
<td>$20.00</td>
<td></td>
</tr>
<tr>
<td>HEADWAY</td>
<td>$800.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>HELMET</td>
<td>$30.00</td>
<td>$10.00</td>
<td></td>
</tr>
<tr>
<td>HI_GLASS</td>
<td>$50.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>HR_ADJ</td>
<td>$100.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>HR_RA</td>
<td>$120.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>HR_RO</td>
<td>$80.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>IRS</td>
<td>$300.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>ISA</td>
<td>$800.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>KNEE_PAD</td>
<td>$100.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>LOAD_RESTR</td>
<td>$100.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>OE Cost</td>
<td>Annual Maint.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>MAYDAY</td>
<td>MAYDAY DISTRESS CALL IN SEVERE CRASH</td>
<td>$500.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>MIRR_DIM</td>
<td>AUTO DIMMING REAR VIEW MIRROR</td>
<td>$200.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>MIRR_FOG</td>
<td>ANTI FOGGING (HEATED) EXTERNAL MIRRORS</td>
<td>$200.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>MIRROR_AUTO</td>
<td>EXTERNAL MIRRORS ELECTRICALLY ADJUSTABLE</td>
<td>$200.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>NAV_SYS</td>
<td>NAVIGATION SYSTEM (GPS)</td>
<td>$2,000.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>PED_IMP</td>
<td>PEDESTRIAN FRIENDLY VEHICLE FRONT</td>
<td>$500.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>PHONE</td>
<td>MOBILE PHONE AVAILABLE IN EVENT OF ACCIDENT</td>
<td>$200.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>POWER_STR</td>
<td>POWER STEERING</td>
<td>$700.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SB_BUCK</td>
<td>SEAT BELT BUCKLE MOUNTED ON SEAT (FRONT)</td>
<td>$50.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SB_CR3</td>
<td>SEAT BELT, CENTRE REAR 3-POINT</td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SB_HARNESS</td>
<td>HARNESS SEAT BELT FOR ADULTS (4PT OR 6PT)</td>
<td>$400.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Component</td>
<td>Description</td>
<td>Nominal Cost</td>
<td>Annual Maintenance</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>SB_HT_ADJ</td>
<td>Seat Belt D-Ring Height Adjustable/Automatic</td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SB_ILOCK</td>
<td>Seat Belt Interlock</td>
<td>$50.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SB_INFLATE</td>
<td>Inflatable Seat Belt</td>
<td>$200.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SB_LL_F</td>
<td>Seat Belt Load Limiters, Front</td>
<td>$20.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SB_LL_R</td>
<td>Seat Belt Load Limiters, Rear</td>
<td>$20.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SB_PT_F</td>
<td>Seat Belt Pretensioner, Front</td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SB_PT_R</td>
<td>Seat Belt Pretensioners, Rear</td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SB_WB_R</td>
<td>Seat Belt Webbing Grabbers, Rear</td>
<td>$40.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SB_WG_F</td>
<td>Seat Belt Webbing Grabbers, Front</td>
<td>$40.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SEAT_ADJ</td>
<td>Adjustable Drivers Seat (Multi-Function)</td>
<td>$200.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SEAT_COOL</td>
<td>Cooled/Heated Drivers Seat</td>
<td>$200.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Description</td>
<td>OE Cost</td>
<td>Annual Maint</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>SEAT_LUM</td>
<td>$50.00</td>
<td>$0.00</td>
<td>Nominal cost assumes system can be readily incorporated on the production line.</td>
</tr>
<tr>
<td>SEAT_SUB</td>
<td>$40.00</td>
<td>$0.00</td>
<td>Based on Muarc Report CR100.</td>
</tr>
<tr>
<td>SIDE_AB_FH</td>
<td>$550.00</td>
<td>$0.00</td>
<td>Usually part of safety package. Nominal cost based on passenger airbag.</td>
</tr>
<tr>
<td>SIDE_AB_RH</td>
<td>$550.00</td>
<td>$0.00</td>
<td>Nominal cost based on passenger airbag.</td>
</tr>
<tr>
<td>SIDE_AB_RT</td>
<td>$400.00</td>
<td>$0.00</td>
<td>Nominal cost based on passenger airbag (70%).</td>
</tr>
<tr>
<td>SIDE_ABFT</td>
<td>$550.00</td>
<td>$0.00</td>
<td>Based on proportional cost of a typical "safety pack" that includes side airbags and data gathering for ANCAP.</td>
</tr>
<tr>
<td>SL_ALARM</td>
<td>$50.00</td>
<td>$0.00</td>
<td>Based on RTA Speed Control Report of 1996. Aftermarket cost about $100. Assumed that OE cost about half of this.</td>
</tr>
<tr>
<td>SL_TOP</td>
<td>$1.00</td>
<td>$0.00</td>
<td>Assumes that engine management chip is recoded to lower the maximum speed (most are set at 250km/h+). In the long term this will be nil cost since it is simply an alternative chip of the same value. A notional value of $1 per vehicle was assigned to enable a B/C calculation. Nil maintenance.</td>
</tr>
<tr>
<td>STR_ADJ</td>
<td>$100.00</td>
<td>$0.00</td>
<td>Nominal cost based on production line change. Negligible in long term.</td>
</tr>
<tr>
<td>TRACTION</td>
<td>$1,000.00</td>
<td>$0.00</td>
<td>Survey of dealers</td>
</tr>
<tr>
<td>TYRE_PRES</td>
<td>$400.00</td>
<td>$0.00</td>
<td>Prototype technology (for cars). Based on similar electronic systems.</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>OE Cost</td>
<td>Annual Maint.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>TYRE_RF</td>
<td>RUN FLAT TYRES</td>
<td>$400.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>ASSUMES A NOMINAL $100 EXTRA PER TYRE (IE ABOUT DOUBLE THE COST OF A NORMAL TYRE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIPER_AUTO</td>
<td>WIPERS AUTOMATIC</td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>BASED ON AFTERMARKET KITS SUCH AS HEADLIGHT ALERTS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIPER_SPD</td>
<td>SPEED SENSITIVE INTERMITTENT WIPERS</td>
<td>$100.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>NOMINAL COST BASED ON COST OF OTHER ELECTRONIC GADGETS. MANY LUXURY VEHICLES NOW HAVE THIS FEATURE AS STANDARD.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>